Exposomics aims to measure human exposures throughout the lifespan and the changes they produce in the human body. Exposome-scale studies have significant potential to understand the interplay of environmental factors with complex multifactorial diseases widespread in our society and whose origin remain unclear. In this framework, the study of the chemical exposome aims to cover all chemical exposures and their effects in human health but, today, this goal still seems unfeasible or at least very challenging, which makes the exposome for now only a concept. Furthermore, the study of the chemical exposome faces several methodological challenges such as moving from specific targeted methodologies towards high-throughput multitargeted and non-targeted approaches, guaranteeing the availability and quality of biological samples to obtain quality analytical data, standardization of applied analytical methodologies, as well as the statistical assignment of increasingly complex datasets, or the identification of (un)known analytes. This review discusses the various steps involved in applying the exposome concept from an analytical perspective. It provides an overview of the wide variety of existing analytical methods and instruments, highlighting their complementarity to develop combined analytical strategies to advance towards the chemical exposome characterization. In addition, this review focuses on endocrine disrupting chemicals (EDCs) to show how studying even a minor part of the chemical exposome represents a great challenge. Analytical strategies applied in an exposomics context have shown great potential to elucidate the role of EDCs in health outcomes. However, translating innovative methods into etiological research and chemical risk assessment will require a multidisciplinary effort. Unlike other review articles focused on exposomics, this review offers a holistic view from the perspective of analytical chemistry and discuss the entire analytical workflow to finally obtain valuable results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.126616 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Air pollution is a leading contributor to the global disease burden. However, the complex nature of the chemicals to which humans are exposed through inhalation has obscured the identification of the key compounds responsible for diseases. Here, we develop a network topology-based framework to identify key toxic compounds in the airborne chemical exposome.
View Article and Find Full Text PDFCells
December 2024
Laboratory of Immuno-Neuro Modulation (INEM), UMR7355 Centre National de la Recherche Scientifique (CNRS), University of Orleans, 45071 Orleans, France.
Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline and impaired gas exchange. The chemokine system, a network of proteins involved in cellular communication with diverse biological functions, plays a crucial role in various respiratory diseases.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2024
Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA.
Residents of Bangladesh are exposed to numerous chemicals due to local industries, including dyeing mills, cotton mills, and the use of biomass in daily cooking. It is, therefore, important to characterize the exposome and work to identify risk factors of exposure. We used silicone wristband passive samplers to evaluate exposure to volatile and semi-volatile organic compounds in a sample of 40 children in the Araihazar upazila of Bangladesh.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States.
Importance: Identifying environmental factors that contribute to disease onset/activity in PV stands to improve clinical outcomes and patient quality of life by strategies aimed at reducing specific disease promoting exposures and promoting personalized clinical management strategies.
Objective: To evaluate the association between hydroxychloroquine use and the development of pemphigus using population level, publicly available, FDA-generated data.
Design: Observational, retrospective, case-control, pharmacovigilance analysis.
Environ Pollut
December 2024
Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.
PER: and polyfluoroalkyl substances (PFAS) are a large group of synthetic organic chemicals that are ubiquitous environmental pollutants. Among PFAS, perfluorodecanoic acid (PFDA) is one of the most toxic compounds, but the molecular basis behind its toxicity is not fully understood. In an interspecies comparison with placental cells (HTR-8/SVneo) and zebrafish embryos, we demonstrate that PFDA induces mitochondrial dysfunction and impairs fatty acid β-oxidation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!