N-Heterocyclic carbenes (NHC) are well-recognized ligands of choice for preparing robust transition metal species. However, their use for fabrication of biomedically relevant nanoparticles has been limited to the synthesis of non-targeted particles showing increased tolerance to different aqueous coagulants. In this work, the first example of carbene-coated metal nanoparticles suitable for in vivo applications is presented. Directed design of a novel biscarbene NHC ligand allowed to prepare the first magnetite/gold (FeO@AuNP@NHC) nanostructures and carbene gold (AuNP@NHC) nanoparticles with significant stability in aqueous solutions and enhanced ability to form bioconjugates. Furthermore, these nanoparticles exhibit an extraordinary property for inorganic nanoparticles: they can endure several additive-free air drying/redispersion cycles without deterioration of their colloidal behavior. Bioconjugated AuNP@NHC and multimodal FeO@AuNP@NHC demonstrated a successful performance in three distinct applications: lateral flow tests, specific cancer cell targeting, and bioimaging. Thus, the results show the notable advantages of the N-heterocyclic carbene coating of inorganic nanoparticles and their utility for complex biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2024.114097 | DOI Listing |
Colloids Surf B Biointerfaces
October 2024
Sirius University of Science and Technology, Olimpiyskiy ave, b.1, Sirius, Krasnodar region 354340, Russian Federation; Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997, Russian Federation.
N-Heterocyclic carbenes (NHC) are well-recognized ligands of choice for preparing robust transition metal species. However, their use for fabrication of biomedically relevant nanoparticles has been limited to the synthesis of non-targeted particles showing increased tolerance to different aqueous coagulants. In this work, the first example of carbene-coated metal nanoparticles suitable for in vivo applications is presented.
View Article and Find Full Text PDFLangmuir
December 2015
Sorbonne Universités, UPMC-Univ Paris 6, UMR 8233, MONARIS, F-75005 Paris, France.
The stability of Au nanocrystals (NCs) coated with different N-heterocyclic carbenes (NHCs) or dodecanethiol (DDT) to oxygen-based treatments was investigated. A dominant effect of the ligand type was observed with a significantly greater oxygen resistance of NHC-coated Au NCs compared to that of the thiol-based analogues. NHC-coated Au NCs are stable to 10 W oxygen plasma etching for up to 180 s whereas the integrity of DDT-coated Au NCs is strongly affected by the same treatment from 60-80 s.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!