Energy recovery from syngas and pyrolysis wastewaters with anaerobic mixed cultures.

Bioresour Bioprocess

Institute of Process Engineering in Life Sciences 2: Electro Biotechnology, Karlsruhe Institute of Technology, KIT, 76131, Karlsruhe, Germany.

Published: July 2024

The anaerobic digestion of aqueous condensate from fast pyrolysis is a promising technology for enhancing carbon and energy recovery from waste. Syngas, another pyrolysis product, could be integrated as a co-substrate to improve process efficiency. However, limited knowledge exists on the co-fermentation of pyrolysis syngas and aqueous condensate by anaerobic cultures and the effects of substrate toxicity. This work investigates the ability of mesophilic and thermophilic anaerobic mixed cultures to co-ferment syngas and the aqueous condensate from either sewage sludge or polyethylene plastics pyrolysis in semi-batch bottle fermentations. It identifies inhibitory concentrations for carboxydotrophic and methanogenic reactions, examines specific component removal and assesses energy recovery potential. The results show successful co-fermentation of syngas and aqueous condensate components like phenols and N-heterocycles. However, the characteristics and load of the aqueous condensates affected process performance and product formation. The toxicity, likely resulting from the synergistic effect of multiple toxicants, depended on the PACs' composition. At 37 °C, concentrations of 15.6 g/g and 7.8 g/g of sewage sludge-derived aqueous condensate inhibited by 50% carboxydotrophic and methanogenic activity, respectively. At 55 °C, loads between 3.9 and 6.8 g/g inhibited by 50% both reactions. Polyethylene plastics condensate showed higher toxicity, with 2.8 g/g and 0.3 g/g at 37 °C decreasing carboxydotrophic and methanogenic rates by 50%. At 55 °C, 0.3 g/g inhibited by 50% CO uptake rates and methanogenesis. Increasing PAC loads reduced methane production and promoted short-chain carboxylates formation. The recalcitrant components in sewage sludge condensate hindered e-mol recovery, while plastics condensate showed high e-mol recoveries despite the stronger toxicity. Even with challenges posed by substrate toxicity and composition variations, the successful conversion of syngas and aqueous condensates highlights the potential of this technology in advancing carbon and energy recovery from anthropogenic waste streams.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283448PMC
http://dx.doi.org/10.1186/s40643-024-00791-3DOI Listing

Publication Analysis

Top Keywords

aqueous condensate
20
energy recovery
16
syngas aqueous
16
carboxydotrophic methanogenic
12
inhibited 50%
12
syngas pyrolysis
8
anaerobic mixed
8
mixed cultures
8
condensate
8
carbon energy
8

Similar Publications

The enduring pathogenicity of can be attributed to its lipid-rich cell wall, with mycolic acids (MAs) being a significant constituent. Different MAs' fluidity and structural adaptability within the bacterial cell envelope significantly influence their physicochemical properties, operational capabilities, and pathogenic potential. Therefore, an accurate conformational representation of various MAs in aqueous media can provide insights into their potential role within the intricate structure of the bacterial cell wall.

View Article and Find Full Text PDF

The nuclear pore complex (NPC) is the proteinous nanopore that solely regulates molecular transport between the nucleus and cytoplasm of a eukaryotic cell. Hypothetically, the NPC utilizes the hydrophobic barriers based on the repeats of phenylalanine-glycine (FG) units to selectively and efficiently transport macromolecules. Herein, we quantitatively assess the hydrophobicity of transport barriers confined in the nanopore by applying scanning electrochemical microscopy (SECM).

View Article and Find Full Text PDF

Co-Delivery of Dacarbazine and miRNA 34a Combinations to Synergistically Improve Malignant Melanoma Treatments.

Drug Des Devel Ther

January 2025

Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People's Republic of China.

Purpose: The incidence of malignant melanoma (MM) has risen over the past three decades, and despite advancements in treatment, there is still a need to improve treatment modalities. This study developed a promising strategy for tumor-targeted co-delivery of Dacarbazine (DTIC) and miRNA 34a-loaded PHRD micelles (Co-PHRD) for combination treatment of MM.

Methods: To construct the dual drug-loaded delivery system Co-PHRD, poly (L-arginine)-poly (L-histidine)-polylactic acid (PLA) was employed as a building block.

View Article and Find Full Text PDF

Modulation of Protein-Protein Interactions with Molecular Glues in a Synthetic Condensate Platform.

J Am Chem Soc

January 2025

Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Misregulation of protein-protein interactions (PPIs) underlies many diseases; hence, molecules that stabilize PPIs, known as molecular glues, are promising drug candidates. Identification of novel molecular glues is highly challenging among others because classical biochemical assays in dilute aqueous conditions have limitations for evaluating weak PPIs and their stabilization by molecular glues. This hampers the systematic discovery and evaluation of molecular glues.

View Article and Find Full Text PDF

Bilayer TiO/Mo-BiVO Photoelectrocatalysts for Ibuprofen Degradation.

Materials (Basel)

January 2025

Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece.

Heterojunction formation between BiVO nanomaterials and benchmark semiconductor photocatalysts has been keenly pursued as a promising approach to improve charge transport and charge separation via interfacial electron transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical pollutants. In this work, a heterostructured TiO/Mo-BiVO bilayer photoanode was fabricated by the deposition of a mesoporous TiO overlayer using the benchmark P25 titania catalyst on top of Mo-doped BiVO inverse opal films as the supporting layer, which intrinsically absorbs visible light below 490 nm, while offering improved charge transport. A porous P25/Mo-BiVO bilayer structure was produced from the densification of the inverse opal underlayer after post-thermal annealing, which was evaluated on photocurrent generation in aqueous electrolyte and the photoelectrocatalytic degradation of the refractory anti-inflammatory drug ibuprofen under back-side illumination by visible and UV-Vis light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!