The CH storage by adsorption on activated carbons for natural gas handling has gained interest due to the appearance of lightweight materials with large surface areas and pore volumes. Consequently, kinetic parameters estimation of the adsorptive process can play a crucial role in understanding and scaling up the system. Concerning its versatility, banana peel (BP) is a biomass with potential for obtaining different products, such as biochar, a solid residue from the biomass' thermal decomposition of difficult disposal, where through an activation process, the material porous features are taken advantage to application as adsorbent of gaseous substances. This research reported data for the CH adsorption kinetic modeling by biochar from BP pyrolysis. The activated biochar textural characterization showed particles with fine mesoporous structure (pore diameter ranging between 29.39 and 55.62 Å). Adsorption kinetic analysis indicated that a modified pseudo-first-order model was the most suitable to represent the experimental data, with equilibrium adsorption of 28 mg g for the samples activated with 20.0% vol wt. of HPO and pyrolysis at 500 °C. The equilibrium constant was consistent with the Freundlich isotherm model, suggesting a physisorption mechanism, and led to a non-ideal, reversible, and not limited to monolayer CH adsorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-34465-6 | DOI Listing |
Artif Organs
January 2025
International Renal Research Institute of Vicenza (IRRIV), Vicenza, Veneto, Italy.
Background: Contrast-associated acute kidney injury (CA-AKI) is frequent in patients with chronic kidney disease who are submitted to cardiac endovascular procedures using iodinated contrast. In hemoadsorption, cartridges containing styrene-divinylbenzene sorbent resin are applied to remove substances from the blood through an extracorporeal circuit. Importantly, iodinated contrast is also removed via adsorption.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
We successfully synthesize monodisperse sulfhydryl-modified mesoporous organosilica nanospheres (MONs-SH) via one-step hydrolytic condensation, where cetyltrimethylammonium chloride and dodecyl sulfobetaine are employed as dual-template agents with (3-mercaptopropyl)triethoxysilane and 1,2-bis(triethoxysilyl)ethane as the precursors and concentrated ammonia as the alkaline catalyst. The prepared MONs-SHs deliver a large specific surface area (729.15 m g), excellent monodispersity, and homogeneous particle size.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China.
The development of copper-based materials with a high efficiency and low cost is desirable for use in iodine (I) remediation. Herein, Cu-nanoparticles-functionalized, ZIF-8 (Zeolite Imidazole Framework-8)-derived, nitrogen-doped carbon composites (Cu@Zn-NC) were synthesized by ball milling and pyrolysis processes. The as-prepared composites were characterized using SEM, BET, XRD, XPS, and FT-IR analyses.
View Article and Find Full Text PDFGels
January 2025
Ecole Nationale Supérieure de Chimie de Rennes, Univ. Rennes, CNRS, UMR 6226, CEDEX 7, 35708 Rennes, France.
A new green hydrogel consisting of cherry stone (CS) powder and sodium alginate (SA) was synthesized through physical crosslinking. The product had a mean diameter of 3.95 mm, a moisture content of 92.
View Article and Find Full Text PDFGels
January 2025
Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia.
Understanding the adsorption features of polymer microgels with different chemical compositions and structures is crucial in studying the mechanisms of respective emulsion stabilization. Specifically, the use of stimuli-responsive particles can introduce new properties and broaden the application range of such complex systems. Recently, we demonstrated that emulsions stabilized by microgels composed of interpenetrating networks (IPNs) of poly-N-isopropylacrylamide (PNIPAM) and polyacrylic acid (PAA) exhibit higher colloidal stability upon heating compared to PNIPAM homopolymer and other relevant PNIPAM-based copolymer counterparts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!