-Sulfenylation Driven Antigen Capture Boosted by Radiation for Enhanced Cancer Immunotherapy.

ACS Nano

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China.

Published: July 2024

Radiotherapy (RT)-induced vaccination greatly promotes the development of personalized cancer vaccines owing to the massive release of antigens initiated by tumor-localized RT eliciting the tumor-specific immune response. However, its broad application in cancer treatment is seriously impeded by poor antigen cross-presentation, low response rate, and short duration of efficacy. Herein, the tumor-antigen-capturing nanosystem dAuNPs@CpG consisting of gold nanoparticles, 3,5-cyclohexanedione (CHD), and immunoadjuvant CpG were fabricated to enhance RT-induced vaccination. Taking advantage of the specific covalent binding between CHD and sulfenic acids of antigen proteins, we show that this nanoplatform has an unexpected potential to capture the sulfenylated tumor-derived protein antigens (TDPAs) induced by RT to generate a vaccination effect, achieving significant growth suppression of both primary and distant tumors in combination with PD-1 blockade. We thus believe that our work presents a powerful and effective means to improve the synergistic tumor radioimmunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c02206DOI Listing

Publication Analysis

Top Keywords

rt-induced vaccination
8
-sulfenylation driven
4
driven antigen
4
antigen capture
4
capture boosted
4
boosted radiation
4
radiation enhanced
4
enhanced cancer
4
cancer immunotherapy
4
immunotherapy radiotherapy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!