Many vaccines require multiple doses for full efficacy, posing a barrier for patient adherence and protection. One solution to achieve full vaccination may be attained with single-administration vaccines containing multiple controlled release doses. In this study, delayed-release vaccines were generated using atomic layer deposition (ALD) to coat antigen-containing powders with alumina. Using in vitro and in vivo methods, we show that increasing the coat thickness controls the kinetics of antigen release and antibody response, ranging from weeks to months. Our results establish an in vitro-in vivo correlation with a level of tunable control over the antigen release and antibody response times with the potential to impact future vaccine design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281649 | PMC |
http://dx.doi.org/10.3390/vaccines12070761 | DOI Listing |
Nanoscale
January 2025
AIT Austrian Institute of Technology, Molecular Diagnostics, 1210 Vienna, Austria.
Metal nanoparticles are established tools for biomedical applications due to their unique optical properties, primarily attributed to localized surface plasmon resonances. They show distinct optical characteristics, such as high extinction cross-sections and resonances at specific wavelengths, which are tunable across the wavelength spectrum by modifying the nanoparticle geometry. These attributes make metal nanoparticles highly valuable for sensing and imaging in biology and medicine.
View Article and Find Full Text PDFNeurobiol Pain
December 2024
Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
A molecular ligand separation method based on multivariate metal-organic frameworks (MOF) is developed to precisely regulate CuSn alloy for tuning the selectivity of HCOOH and CO in CO reduction. With this method, the agglomeration and heterogeneous nucleations of metals are effectively inhibited during the electrochemical transformation of CuSn-MOFs into highly pure CuSn alloy. The low Sn content favors CO production, while the high Sn concentration facilitates HCOOH formation.
View Article and Find Full Text PDFChemphyschem
January 2025
Christ University, Centre for Advanced Research and Development, Hosur Road, Central Campus, 560029, India, 560029, Bengaluru, INDIA.
The utilization of liquid crystals (LC) as materials has enabled the enlargement of lenses with the potential to alter their focus. Tunable LC lenses with adjustable focus are essential for optical imaging, sensing, and detection devices. This technology offers many benefits, such as the ability to adjust focus, operate with low power, and be easily made.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical Engineering, Tohoku University, Sendai, Miyagi 9808579, Japan.
Aqueous antibacterial colloids are potential agents that kill bacteria via physical contact. Conventionally, antibacterial agents are designed to be small, cationic, or hydrophobic. However, hydrophobic materials easily aggregate in aqueous media, drastically inhibiting their activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!