Commensal HPVs Have Evolved to Be More Immunogenic Compared with High-Risk α-HPVs.

Vaccines (Basel)

Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.

Published: July 2024

Commensal human papillomaviruses (HPVs) are responsible for persistent asymptomatic infection in the human population by maintaining low levels of the episomal genome in the stratified epithelia. Herein, we examined the immunogenicity of cutaneotropic HPVs that are commonly found in the skin. Using an in silico platform to determine human leukocyte antigen (HLA)-peptide complex binding affinity, we observed that early genes of cutaneotropic HPV types within the same species can generate multiple conserved, homologous peptides that bind with high affinity to HLA class I alleles. Interestingly, we discovered that commensal β, γ, μ, and ν HPVs contain significantly more immunogenic peptides compared with α-HPVs, which include high-risk, oncogenic HPV types. Our findings indicate that commensal HPV proteins have evolved to generate peptides that better complement their host's HLA repertoire. Promoting higher control by host T cell immunity in this way could be a mechanism by which HPVs achieve widespread asymptomatic colonization in humans. This work supports the role of commensal HPVs as immunogenic targets within epithelial cells, which may contribute to the immune regulation of the skin and mucosa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281416PMC
http://dx.doi.org/10.3390/vaccines12070749DOI Listing

Publication Analysis

Top Keywords

commensal hpvs
12
hpv types
8
hpvs immunogenic
8
commensal
5
hpvs
5
hpvs evolved
4
evolved immunogenic
4
immunogenic compared
4
compared high-risk
4
high-risk α-hpvs
4

Similar Publications

Commensal papillomavirus immunity preserves the homeostasis of highly mutated normal skin.

Cancer Cell

January 2025

Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. Electronic address:

Immunosuppression commonly disrupts the homeostasis of mutated normal skin, leading to widespread skin dysplasia and field cancerization. However, the immune system's role in maintaining the normal state of mutated tissues remains uncertain. Herein, we demonstrate that T cell immunity to cutaneotropic papillomaviruses promotes the homeostasis of ultraviolet radiation-damaged skin.

View Article and Find Full Text PDF

The HPV101 E7 protein shares host cellular targets and biological activities with high-risk HPV16 E7.

Tumour Virus Res

December 2024

Genetics, Molecular, and Cellular Biology Program, Graduate School of Biomedical Sciences, Tufts University, 02111, Boston, MA, USA; Department of Developmental, Molecular and Cellular Biology, Tufts University School of Medicine, 02111, Boston, MA, USA. Electronic address:

Human papillomaviruses (HPVs) are a diverse family of viruses with over 450 members that have been identified and fully sequenced. They are classified into five phylogenetic genera: alpha, beta, gamma, mu, and nu. The high-risk alpha HPVs, such as HPV16, have been studied the most extensively due to their medical significance as cancer-causing agents.

View Article and Find Full Text PDF

In 2022, a bioinformatic, agnostic approach identified HPV42 as causative agent of a rare cancer, later confirmed experimentally. This unexpected association offers an opportunity to reconsider our understanding about papillomavirus infections and cancers. We have expanded our knowledge about the diversity of papillomaviruses and the diseases they cause.

View Article and Find Full Text PDF

Commensal HPVs Have Evolved to Be More Immunogenic Compared with High-Risk α-HPVs.

Vaccines (Basel)

July 2024

Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.

Commensal human papillomaviruses (HPVs) are responsible for persistent asymptomatic infection in the human population by maintaining low levels of the episomal genome in the stratified epithelia. Herein, we examined the immunogenicity of cutaneotropic HPVs that are commonly found in the skin. Using an in silico platform to determine human leukocyte antigen (HLA)-peptide complex binding affinity, we observed that early genes of cutaneotropic HPV types within the same species can generate multiple conserved, homologous peptides that bind with high affinity to HLA class I alleles.

View Article and Find Full Text PDF

The human skin virome, unlike commensal bacteria, is an under investigated component of the human skin microbiome. We developed a sensitive, quantitative assay to detect cutaneous human resident papillomaviruses (HPV) and polyomaviruses (HPyV) and we first used it to describe these viral populations at the skin surface of two patients with atopic dermatitis (AD) and psoriasis (PSO). We performed skin swabs on lesional and non-lesional skin in one AD and one PSO patient at M0, M1 and M3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!