is one of the main causes of healthcare-associated infection in Europe that increases patient morbidity and mortality. Multi-resistant pathogens are a major public health issue in burn centers. Mortality increases when the initial antibiotic treatment is inappropriate, especially if the patient is infected with strains that are resistant to many antibiotics. Phage therapy is an emerging option to treat severe infections. It involves using natural viruses called bacteriophages, which have the ability to infect, replicate, and, theoretically, destroy the population in an infected patient. We report here the case of a severely burned patient who experienced relapsing ventilator-associated pneumonia associated with skin graft infection and bacteremia due to extensively drug-resistant . The patient was successfully treated with personalized nebulized and intravenous phage therapy in combination with immunostimulation (interferon-γ) and last-resort antimicrobial therapy (imipenem-relebactam).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281479 | PMC |
http://dx.doi.org/10.3390/v16071080 | DOI Listing |
Bacteriophage research has experienced a renaissance in recent years, owing to their therapeutic potential and versatility in biotechnology, particularly in combating antibiotic resistant-bacteria along the farm-to-fork continuum. However, certain pathogens remain underexplored as targets for phage therapy, including the zoonotic pathogen which causes infections in pigs and humans. Despite global efforts, the genome of only one infective phage has been described.
View Article and Find Full Text PDFFood Chem
January 2025
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China. Electronic address:
Bacteriophages are promising alternatives for combating multidrug-resistant bacterial infections. Two lytic bacteriophages, named P1 and P3, targeting pathogenic Escherichia coli (ExPEC; strain TZ1_3) were isolated and evaluated for their potential ability to control pathogenic numbers either in ExPEC-contaminated food or ExPEC-infected mice. Results showed that phages significantly reduced ExPEC numbers within 6 and 12 h in contaminated water, milk, beef, and chicken when applied at 10 plaque-forming units (PFU).
View Article and Find Full Text PDFJ Infect Dis
January 2025
Division of Environmental Health Sciences, School of Public Health, University of Minnesota, St. Paul, MN 55108, USA.
Shiga toxin-producing Escherichia coli (STEC) infections pose a significant public health challenge, characterized by severe complications including hemolytic uremic syndrome (HUS) due to Shiga toxin (Stx) production. Current therapeutic approaches encounter a critical limitation, as conventional antibiotic treatment is contraindicated due to its propensity to trigger bacterial SOS response and subsequently enhance Stx production, which increases the likelihood of developing HUS in antibiotic-treated patients. The lack of effective, safe therapeutic options has created an urgent need for alternative treatment strategies for STEC infections.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
is a vital zoonotic pathogen known for its extensive drug resistance and ability to form biofilms, which contribute to its antibiotic resistance. In this study, the phage vB_C4, specifically targeting , was isolated and subjected to bioinformatic analysis and bacteriostatic activity assays. The combination of phage vB_C4 with antibiotics such as cephalothin and cefoxitin, which target the bacterial cell wall, resulted in a significantly enhanced bacteriostatic effect compared to either the phage or antibiotics alone.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
Bovine mastitis is a considerable challenge within the dairy industry, causing significant financial losses and threatening public health. The increased occurrence of methicillin-resistant Staphylococcus aureus (MRSA) has provoked difficulties in managing bovine mastitis. Bacteriophage therapy presents a novel treatment strategy to combat MRSA infections, emerging as a possible substitute for antibiotics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!