A Miniaturized Dual-Band Circularly Polarized Implantable Antenna for Use in Hemodialysis.

Sensors (Basel)

The School of Electrical Engineering, Xinjiang University, Huarui Street 777#, Shuimogou District, Urumqi 830047, China.

Published: July 2024

Hemodialysis is achieved by implanting a smart arteriovenous graft (AVG) to build a vascular pathway, but reliability and stability in data transmission cannot be guaranteed. To address this issue, a miniaturized dual-band circularly polarized implantable antenna operating at 1.4 GHz (for energy transmission) and 2.45 GHz (for wireless telemetry), implanted in a wireless arteriovenous graft monitoring device (WAGMD), has been designed. The antenna design incorporates a rectangular serpentine structure on the radiation surface to reduce its volume to 9.144 mm. Furthermore, matching rectangular slots on the radiation surface and the ground plane enhance the antenna's circular polarization performance. The simulated effective 3 dB axial ratio (AR) bandwidths are 11.43% (1.4 GHz) and 12.65% (2.45 GHz). The simulated peak gains of the antenna are -19.55 dBi and -22.85 dBi at 1.4 GHz and 2.45 GHz, respectively. The designed antenna is implanted in a WAGMD both in the simulation and the experiment. The performance of the system is simulated in homogeneous human tissue models of skin, fat, and muscle layers, as well as a realistic adult male forearm model. The measurement results in a minced pork environment align closely with the simulation results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11280927PMC
http://dx.doi.org/10.3390/s24144743DOI Listing

Publication Analysis

Top Keywords

245 ghz
12
miniaturized dual-band
8
dual-band circularly
8
circularly polarized
8
polarized implantable
8
implantable antenna
8
arteriovenous graft
8
designed antenna
8
radiation surface
8
ghz
6

Similar Publications

We have developed a microwave spectrometer for a measurement of the Lamb shift of antihydrogen atoms towards the determination of the antiproton charge radius. The spectrometer consists of two consecutive apparatuses, of which the first apparatus, (HFS), filters out hyperfine states and pre-selects the state, and the second apparatus, (MWS), sweeps the frequency around the target transition to obtain the spectrum. We optimized the geometry of the apparatuses by evaluating the S-parameter that represents the ratio of the reflected microwave signal over the input, utilizing microwave simulations based on the finite element method.

View Article and Find Full Text PDF
Article Synopsis
  • - The study introduces a circularly-polarized planar monopole antenna designed for ultra-wideband (UWB) applications, utilizing characteristic mode analysis (CMA) to achieve broader bandwidths.
  • - A crescent-shaped radiator and circular open-loop antenna initially had limited performance in achieving wideband characteristics; modifications like a triangular slit and L-shaped strip were added to improve the axial ratio bandwidth substantially.
  • - The final design boasts a compact size and impressive performance metrics, including a -10 dB S bandwidth of 5.73-10.78 GHz, a 3 dB axial ratio bandwidth of 6-11.12 GHz, and effective gain and efficiency, demonstrating strong omnidirectional radiation patterns across frequencies. *
View Article and Find Full Text PDF

MOFs-Derived Strategy and Ternary Alloys Regulation in Flower-Like Magnetic-Carbon Microspheres with Broadband Electromagnetic Wave Absorption.

Nanomicro Lett

July 2024

Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, People's Republic of China.

Broadband electromagnetic (EM) wave absorption materials play an important role in military stealth and health protection. Herein, metal-organic frameworks (MOFs)-derived magnetic-carbon CoNiM@C (M = Cu, Zn, Fe, Mn) microspheres are fabricated, which exhibit flower-like nano-microstructure with tunable EM response capacity. Based on the MOFs-derived CoNi@C microsphere, the adjacent third element is introduced into magnetic CoNi alloy to enhance EM wave absorption performance.

View Article and Find Full Text PDF

To satisfy the requirements of modern communication systems and wearables using 2.4/5.8 GHz band this paper presents a simple, compact, and dual-band solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!