The next generation phased array radio telescopes, such as the Square Kilometre Array (SKA) low frequency aperture array, suffer from RF interference (RFI) because of the large field of view of antenna element. The classical station beamformer used in SKA-low is resource efficient but cannot deal with the unknown sidelobe RFI. A real-time adaptive beamforming strategy is proposed for SKA-low station, which trades the capability of adaptive RFI nulling at an acceptably cost, it doesn't require hardware redesign but only modifies the firmware accordingly. The proposed strategy uses a Parallel Least Mean Square (PLMS) algorithm, which has a computational complexity of 4N+2 and can be performed in parallel. Beam pattern and output SINR simulation results show deeply nulling performance to sidelobe RFI, as well as good mainlobe response similar to the classical beamformer. The convergence performance depends on the signal-and-interference environments and step size, wherein too large a step size leads to a non-optimal output SINR and too small a step size leads to slow convergence speed. FPGA implementation demonstrations are implemented and tested on a NI FPGA module, and test results demonstrate good real-time performance and low slice resource consumption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281091 | PMC |
http://dx.doi.org/10.3390/s24144723 | DOI Listing |
Drug Deliv Transl Res
January 2025
Faculty of Science, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
The aim of this study was to assess the critical quality attributes of parenteral nanoemulsion formulations by measuring several physicochemical parameters and linking them to their in vitro performance, illustrating how simplistic and routinely used approaches are insufficient for understanding a potential nanomedicine. Physicochemical characterization should encompass size and size distribution through at least two orthogonal techniques, such as dynamic light scattering (DLS) and electron microscopy, with added value from analytical ultracentrifugation. In vitro toxicity assessment was performed using three different assays to determine mitochondrial activity (WST-1), membrane integrity (lactate dehydrogenase release (LDH) assay), and cell viability (propidium iodide (PI) staining).
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Beijing Minhai Biotechnology Co. Ltd, Beijing 102600, China. Electronic address:
Streptococcus pneumoniae is a major pathogen of bacterial pneumonia, meningitis, sepsis, and otitis media. The pathogenicity of this bacterium is largely attributed to its polysaccharide capsule, a protective layer around bacterial cell that enables bacteria to resist against host defense. Capsular polysaccharides (CPSs) of S.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
College of Animal Science and Technology, Northwest A&F University, 22 nt, Xinong Road, Yangling, Shaanxi, China. Electronic address:
Low-coverage whole-genome sequencing (LcWGS), a cost-effective genotyping method, offers greater flexibility in variant detection than does single-nucleotide polymorphism (SNP) chips. However, to our knowledge, no studies have explored the application of LcWGS in sheep. This study aimed to evaluate the feasibility of implementing LcWGS and genotype imputation and assess their applicability in genomic studies of body weight and milk yield in sheep.
View Article and Find Full Text PDFFront Pediatr
December 2024
Department of Endocrinology, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.
Context: Type 2 diabetes (DM2) is an emerging disease in the pediatric population. DM2 is associated with metabolic-associated fatty liver disease (MAFLD). High-density lipoproteins (HDLs) are lipoproteins that are believed to have atheroprotective properties that reduce the risk of cardiovascular disease (CVD).
View Article and Find Full Text PDFJ Fluoresc
January 2025
Institute of Chemical Technology, Matunga, Mumbai, India.
This study introduces an innovative approach to high-resolution latent fingerprint detection using carbon quantum dots (CQDs) biosynthesized from spent coffee grounds, enhanced with nitrogen doping. Conventional fingerprinting methods frequently use hazardous chemicals and are costly, highlighting the need for eco-friendly, affordable alternatives that preserve detection quality. The biosynthesized nitrogen-doped CQDs exhibit strong photoluminescence and high stability, offering a sustainable, effective alternative for fingerprint imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!