A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermal Deformation Measurement of the Surface Shape of a Satellite Antenna Using High-Accuracy Close-Range Photogrammetry. | LitMetric

AI Article Synopsis

  • A novel photogrammetric technique was used to accurately measure the size and thermal deformation of a satellite antenna, demonstrating measurement errors below 0.04 mm, which is suitable for technical requirements.
  • The study found that the antenna's surface shape and rib precision decline as temperatures drop, with the most significant deformation occurring at -60 °C, yet still meeting the design accuracy standards.
  • For temperature variations of 40 °C and 80 °C, the radial mean square errors (RMSE) for surface shape deformation were 0.216 mm and 0.411 mm, respectively, confirming that the design criteria for antenna accuracy were achieved.

Article Abstract

To determine both the size of a satellite antenna and the thermal deformation of its surface shape, a novel high-accuracy close-range photogrammetric technique is used in this study. The method is also applied to assess the performance of the antenna in orbit. The measurement principle and solution method of close-range photogrammetry were thoroughly investigated, and a detailed measurement test scheme was developed. A thermal deformation measurement of the surface shape of a satellite antenna was then carried out. The results show that the measurement error using close-range photogrammetry was smaller than 0.04 mm, which meets the accuracy requirement. Thanks to the high accuracy, it was discovered that both the surface shape and the rib precision of the satellite antenna deteriorate with decreasing temperature. The accuracy of the surface shape and ribs was lowest when the temperature node was -60 °C. The maximum root mean square errors (RMSEs) reached 0.878 mm and 0.761 mm, respectively. This indicates that the surface shape deformation error of the antenna caused by high and low temperatures is relatively high. However, the requirement for the technical design index (RMSE ≤ 1 mm for the surface shape accuracy of the antenna) is still met. Furthermore, for temperature differences of 40 °C and 80 °C, the measured RMSEs for the surface shape deformation were 0.216 mm and 0.411 mm, respectively. Overall, the technical design indicators (RMSE ≤ 0.3 mm and RMSE ≤ 0.5 mm, respectively) for the surface shape deformation of the antennas are met.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281208PMC
http://dx.doi.org/10.3390/s24144722DOI Listing

Publication Analysis

Top Keywords

surface shape
36
satellite antenna
16
thermal deformation
12
close-range photogrammetry
12
shape deformation
12
rmse ≤
12
surface
9
shape
9
deformation measurement
8
measurement surface
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!