A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrating sEMG and IMU Sensors in an e-Textile Smart Vest for Forward Posture Monitoring: First Steps. | LitMetric

Currently, the market for wearable devices is expanding, with a growing trend towards the use of these devices for continuous-monitoring applications. Among these, real-time posture monitoring and assessment stands out as a crucial application given the rising prevalence of conditions like forward head posture (FHP). This paper proposes a wearable device that combines the acquisition of electromyographic signals from the cervical region with inertial data from inertial measurement units (IMUs) to assess the occurrence of FHP. To improve electronics integration and wearability, e-textiles are explored for the development of surface electrodes and conductive tracks that connect the different electronic modules. Tensile strength and abrasion tests of 22 samples consisting of textile electrodes and conductive tracks produced with three fiber types (two from Shieldex and one from Imbut) were conducted. Imbut's Elitex fiber outperformed Shieldex's fibers in both tests. The developed surface electromyography (sEMG) acquisition hardware and textile electrodes were also tested and benchmarked against an electromyography (EMG) gold standard in dynamic and isometric conditions, with results showing slightly better root mean square error (RMSE) values (for 4 × 2 textile electrodes (10.02%) in comparison to commercial Ag/AgCl electrodes (11.11%). The posture monitoring module was also validated in terms of joint angle estimation and presented an overall error of 4.77° for a controlled angular velocity of 40°/s as benchmarked against a UR10 robotic arm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11280952PMC
http://dx.doi.org/10.3390/s24144717DOI Listing

Publication Analysis

Top Keywords

posture monitoring
12
textile electrodes
12
electrodes conductive
8
conductive tracks
8
electrodes
5
integrating semg
4
semg imu
4
imu sensors
4
sensors e-textile
4
e-textile smart
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!