A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting Rail Corrugation Based on Convolutional Neural Networks Using Vehicle's Acceleration Measurements. | LitMetric

This paper presents a deep learning approach for predicting rail corrugation based on on-board rolling-stock vertical acceleration and forward velocity measurements using One-Dimensional Convolutional Neural Networks (CNN-1D). The model's performance is examined in a 1:10 scale railway system at two different forward velocities. During both the training and test stages, the CNN-1D produced results with mean absolute percentage errors of less than 5% for both forward velocities, confirming its ability to reproduce the corrugation profile based on real-time acceleration and forward velocity measurements. Moreover, by using a Gradient-weighted Class Activation Mapping (Grad-CAM) technique, it is shown that the CNN-1D can distinguish various regions, including the transition from damaged to undamaged regions and one-sided or two-sided corrugated regions, while predicting corrugation. In summary, the results of this study reveal the potential of data-driven techniques such as CNN-1D in predicting rails' corrugation using online data from the dynamics of the rolling-stock, which can lead to more reliable and efficient maintenance and repair of railways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281133PMC
http://dx.doi.org/10.3390/s24144627DOI Listing

Publication Analysis

Top Keywords

predicting rail
8
rail corrugation
8
corrugation based
8
convolutional neural
8
neural networks
8
acceleration forward
8
forward velocity
8
velocity measurements
8
forward velocities
8
corrugation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!