The Increase in the Plasticity of Microcrystalline Cellulose Spheres' When Loaded with a Plasticizer.

Pharmaceutics

Leading Research Group, Faculty of Pharmacy, Riga Stradiņš University, 21 Konsula Str., LV-1007 Riga, Latvia.

Published: July 2024

Compaction pressure can induce an undesirable solid-state polymorphic transition in drugs, fragmentation, loss of coated pellet integrity, and the decreased viability and vitality of microorganisms. Thus, the excipients with increased plasticity can be considered as an option to decrease the undesirable effects of compaction pressure. This study aims to increase the plasticity (to reduce the mean yield pressure; ) of dried microcrystalline cellulose (MCC) by loading it with a specially selected plasticizer. Diethyl citrate (DEC), water, and glycerol were the considered plasticizers. Computation of solubility parameters was used to predict the miscibility of MCC with plasticizers (possible plasticization effect). Plasticizer-loaded MCC spheres with 5.0 wt.% of water, 5.2 wt.% of DEC, and 4.2 wt.% glycerol were obtained via the solvent method, followed by solvent evaporation. Plasticizer-loaded formulations were characterised by TGA, DSC, pXRD, FTIR, pressure-displacement profiles, and in-die Heckel plots. was derived from the in-die Heckel analysis and was used as a plasticity parameter. In comparison with non-plasticized MCC ( = 136.5 MPa), the plasticity of plasticizer-loaded formulations increased (and decreased) from DEC (124.7 MPa) to water (106.6 MPa) and glycerol (99.9 MPa), and that was in full accordance with the predicted miscibility likeliness order based on solubility parameters. Therefore, water and glycerol were able to decrease the of non-plasticized MCC spheres by 16.3 and 30.0%, respectively. This feasibility study showed the possibility of modifying the plasticity of MCC by loading it with a specially selected plasticizer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11279479PMC
http://dx.doi.org/10.3390/pharmaceutics16070945DOI Listing

Publication Analysis

Top Keywords

increase plasticity
8
microcrystalline cellulose
8
compaction pressure
8
mcc loading
8
loading specially
8
specially selected
8
selected plasticizer
8
water glycerol
8
solubility parameters
8
mcc spheres
8

Similar Publications

Assessing the Efficacy of Pyrolysis-Gas Chromatography-Mass Spectrometry for Nanoplastic and Microplastic Analysis in Human Blood.

Environ Sci Technol

January 2025

Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.

Humans are constantly exposed to micro- and nanosized plastics (MNPs); however, there is still limited understanding of their fate within the body, partially due to limitations with current analytical techniques. The current study assessed the appropriateness of pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) analysis for the quantification of a range of polymers in human blood. An extraction protocol that reduced matrix interferences (false positives) of polyethylene (PE) and polyvinyl chloride (PVC) was developed and validated.

View Article and Find Full Text PDF

Wounds from gunshots and other explosive devices are a source of loss of substances directly or secondary to a well- conducted debridement. In addition, these types of wounds are by definition contaminated. The major challenge in this context for any surgeon remains coverage.

View Article and Find Full Text PDF

Background: Breast cancer remains a leading cause of mortality among women, driven by the molecular complexity of its various subtypes. This study aimed to investigate the differential expression of genes and miRNAs involved in the PI3K/AKT/mTOR signaling pathway, a critical regulator of cancer progression.

Methods: We analyzed tumor tissues from five breast cancer subtypes-luminal A, luminal B HER2-negative, luminal B HER2-positive, HER2-positive, and triple-negative breast cancer (TNBC)-and compared them with non-cancerous tissues.

View Article and Find Full Text PDF

Autophagic flux modulates tumor heterogeneity and lineage plasticity in SCLC.

Front Oncol

January 2025

Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.

Introduction: Small cell lung cancer (SCLC) is characterized by significant heterogeneity and plasticity, contributing to its aggressive progression and therapy resistance. Autophagy, a conserved cellular process, is implicated in many cancers, but its role in SCLC remains unclear.

Methods: Using a genetically engineered mouse model ( ; ; GFP-LC3-RFP-LC3△G), we tracked autophagic flux to investigate its effects on SCLC biology.

View Article and Find Full Text PDF

Background: Interphalangeal joint (IPJ) arthrodesis and arthroplasty are mainstay treatments for IPJ arthritis with conflicting evidence about the most efficacious choice. Our study describes case volume and incidence over the last decade (2010-2019).

Methods: The IBM MarketScan database was queried using Current Procedural Terminology codes for IPJ arthrodesis and arthroplasty from January 2010 to December 2019.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!