In this study, the impact of ethylene oxide, propylene oxide, 1,2-butene oxide, and 1,2-pentene oxide on the polymerization of propylene at an industrial level was investigated, focusing on their influence on the catalytic efficiency and the properties of polypropylene (PP) without additives. The results show that concentrations between 0 and 1.24 ppm of these epoxides negatively affect the reaction's productivity, the PP's mechanical properties, the polymer's fluidity index, and the PP's thermal properties. Fourier transform infrared spectroscopy (FTIR) revealed bands for the Ti-O bond and the Cl-Ti-O-CH bonds at 430 to 475 cm and 957 to 1037 cm, respectively, indicating the interaction between the epoxides and the Ziegler-Natta catalyst. The thermal degradation of PP in the presence of these epoxides showed a similar trend, varying in magnitude depending on the concentration of the inhibitor. Sample M7, with 0.021 ppm propylene oxide, exhibited significant mass loss at both 540 °C and 600 °C, suggesting that even small concentrations of this epoxide can markedly increase the thermal degradation of PP. This pattern is repeated in samples with 1,2-butene oxide and 1,2-pentene oxide. These results highlight the need to strictly control the presence of impurities in PP production to optimize both the final product's quality and the polymerization process's efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11280996 | PMC |
http://dx.doi.org/10.3390/polym16142080 | DOI Listing |
Langmuir
December 2024
State Key Laboratory of Chemical Safety, 339th Songling Road, Qingdao 266071, China.
Direct epoxidation of propylene (CH) with hydrogen (H) and oxygen (O) over the Au/TS-1 catalyst is known as the "Holy Grail" reaction for propylene oxide (PO) synthesis. However, Au nanoparticle loading on TS-1 was limited by traditional deposition precipitation, impregnation and could not achieve ideal catalytic results. In this report, alkaline-assisted excessive impregnation helped to remove Cl from the Au impregnation precursor, improve the loading efficiency of Au nanoparticles and overcome the abnormal growth of nanograins.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills, 1, Bld. 3, 119991 Moscow, Russia.
The simple approach of increasing the elastic properties of atactic poly(propylene carbonate) (PPC) with Mn = 71.4 kDa, ĐM = M/M = 1.86, and predominantly carbonate units (>99%) is suggested by selecting the appropriate hot pressing temperature for PPC between 110 and 140 °C.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Interdisciplinary Research Centre for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia. Electronic address:
Research on Mg-based implants has increased recently because of their compatibility and biodegradability. Despite this promise, challenges related to high corrosion rates hampered wide-scale deployment. This paper explores the inhibiting properties of biomacromolecules, sodium alginate (ALG), hydroxyethyl cellulose (HEC), aspartame (ASP), and poly(ethylene oxide)-b-poly(propylene oxide) copolymer (PEO-b-PPO) on AZ31 Mg alloy in simulated body fluid at 37 °C.
View Article and Find Full Text PDFWaste Manag
December 2024
School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, the People's Republic of China. Electronic address:
Friction cleaning can effectively remove the paint coating (adhesive organic impurities) on the surface of waste glass, and promote the closed-loop recovery of urban silicic acid resources in industrial applications. However, due to a large number of mechanical collisions and wear during use, it is easy to produce powder dust and organic waste gas, and the pollution characteristics and mechanism have not been studied. In this study, the ball milling experiment was designed and the pollutants were tested and evaluated.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Biological Science and Technology, University of Jinan, Jinan, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!