Progress in Polyurethane and Composites.

Polymers (Basel)

Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.

Published: July 2024

Polyurethane materials have received increasing attention as daily materials due to their unique structures and properties [...].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281254PMC
http://dx.doi.org/10.3390/polym16142031DOI Listing

Publication Analysis

Top Keywords

progress polyurethane
4
polyurethane composites
4
composites polyurethane
4
polyurethane materials
4
materials received
4
received increasing
4
increasing attention
4
attention daily
4
daily materials
4
materials unique
4

Similar Publications

Unlocking new possibilities in ionic thermoelectric materials: a machine learning perspective.

Natl Sci Rev

January 2025

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.

The high thermopower of ionic thermoelectric (-TE) materials holds promise for miniaturized waste-heat recovery devices and thermal sensors. However, progress is hampered by laborious trial-and-error experimentations, which lack theoretical underpinning. Herein, by introducing the simplified molecular-input line-entry system, we have addressed the challenge posed by the inconsistency of -TE material types, and present a machine learning model that evaluates the Seebeck coefficient with an of 0.

View Article and Find Full Text PDF

The dark side of the fibroblastic sleeve: Case report and literature review.

J Vasc Access

December 2024

Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.

The fibroblastic sleeve is a structure potentially enveloping any intravascular device. At ultrasound scan, it typically presents as a thin layer of variably echogenic material covering the catheter surface, which usually tends to remain into the vessel after the catheter removal. However, several case reports have documented its migration toward the heart or pulmonary artery after a central venous catheter removal.

View Article and Find Full Text PDF

Studies on the Enzymatic Degradation Process of Epoxy-Polyurethane Compositions Obtained with Raw Materials of Natural Origin.

Molecules

November 2024

Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska Str. 24, 31-155 Kraków, Poland.

Along with the development of technology and the increasing consumption of polymeric materials, which have become an integral part of man's everyday life, problems related to their disposal are arising. The presented research concentrates on the studies on the enzymatic degradation of selected epoxy-polyurethane materials filled with 2 or 5 wt.% of waste unmodified or chemically modified through mercerization wood flour.

View Article and Find Full Text PDF

Isocyanate-free polyurethane adhesives have attracted considerable attention as a promising environmentally friendly alternative. However, their progress has been hindered by insufficient bonding performance and weak solvent resistance, as well as the laborious synthesis processes involved. Herein, we successfully synthesized a high-performance lignin-based non-isocyanate adhesives (LNIPUs-G) through a one-pot strategy that combines the polycondensation of carbonate groups with polyether amines and aldehyde-amine chemistry.

View Article and Find Full Text PDF

Peripheral nerve injuries (PNI) represent the most common type of nervous system injuries, resulting in 5 million injuries per year. Current gold standard, autografts, still carry several limitations, including the inappropriate type, size, and function matches in grafted nerves, lack of autologous donor sites, neuroma formation, and secondary surgery incisions. Polymeric nerve conduits, also known as nerve guides, can help overcome the aforementioned issues that limit nerve recovery and regeneration by reducing tissue fibrosis, misdirection of regenerating axons, and the inability to maintain long- distance axonal growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!