In this study, polyacrylic acid hydrogels were prepared by modulating the cross-linking agent mass ratio using UV and heat curing methods. The structures and properties of the hydrogels were characterized and analyzed using Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The results showed that the mechanical properties of the hydrogels prepared through UV curing were better than those prepared through heat curing. The maximum mechanical tensile strength of 139 kPa was achieved at a cross-linking agent mass ratio of 3.85% with 20 min of UV curing, and the maximum mechanical compressive strength of 0.16 MPa was achieved at a cross-linking agent mass ratio of 2.91% with 20 min of UV curing. However, the hydrogels prepared by heat curing had a higher tensile strength than those prepared using the heat curing method. In addition, the thermally cured hydrogels had higher water absorption and adsorption properties. Moreover, the PAA hydrogels prepared at cross-linking agent mass ratios of 1.91 and 2.91% with 2 h of the heat curing method had the best swelling properties. Moreover, the increase in the cross-linker mass concentration led to a decrease in the pore size and porosity and to a more compact structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281173 | PMC |
http://dx.doi.org/10.3390/polym16141990 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!