The use of artificial fertilizers follows the intensification of agricultural production as a consequence of population growth, which leads to soil depletion, loss of organic matter, and pollution of the environment and production. This can be overcome by increasing the use of organic fertilizers in agriculture. In the present study, we investigated the effect of using vermicompost, biochar, mineral fertilizer, a combination of vermicompost and mineral fertilizer, and an untreated control on alluvial-meadow soil on the development of fodder winter barley L., . We used a randomized complete block design of four replications per treatment. Barley grain yield, number of plants, and soil and microbiological parameters were studied. We found statistically proven highest grain yield and grain protein values when applying vermicompost alone, followed by the combined treatment and mineral fertilizer. The total organic carbon was increased by 70.2% in the case of vermicompost and by 44% in the case of combined treatment, both compared to the control. Thus, soil microbiome activity and enzyme activities were higher in vermicompost treatment, where the activity of β-glucosidase was 29.4% higher in respect to the control, 37.5% to the mineral fertilizer, and 24.5% to the combined treatments. In conclusion, our study found the best overall performance of vermicompost compared to the rest of the soil amendments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11279231PMC
http://dx.doi.org/10.3390/microorganisms12071447DOI Listing

Publication Analysis

Top Keywords

mineral fertilizer
16
grain yield
12
barley grain
8
combined treatment
8
soil
6
vermicompost
6
fertilization type
4
type differentially
4
differentially barley
4
grain
4

Similar Publications

Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.

View Article and Find Full Text PDF

Farming practices such as soil tillage, organic/mineral fertilization, irrigation, crop selection and residues management influence multiple ecosystem services provided by agricultural systems. These practices exhibit complex, non-linear interrelationships that affect crop productivity, water quality, and non-carbon dioxide greenhouse gases (GHG) emissions, possibly offsetting their benefits regarding soil organic carbon (SOC) sequestration. Current methodologies from the Intergovernmental Panel on Climate Change (IPCC) for assessing the impacts of alternative farming practices on GHG emissions rely on global or country-specific coefficients.

View Article and Find Full Text PDF

The dataset presented in this data paper supports "The prenatal assimilation of minerals and metals in the nestlings of a small passerine bird" (Orłowski et al. 2024) [1]. The article includes raw data on dead nestlings of a small passerine bird, the Eurasian Reed Warbler breeding in an extensive reedbed (with dominating plant species, the Common Reed located in an intensively fertilized fishpond habitat, the Stawy Milickie [Milicz Ponds] Nature Reserve (SW Poland).

View Article and Find Full Text PDF

Increasing nitrogen use efficiency (NUE) remains a crucial topic in contemporary agriculture. Inoculation with endophytic diazotrophic bacteria offers a potential solution, but the results vary with the N-fertilization regime. Here, we examined the efficacy of inoculation with Herbaspirillum seropedicae strain HRC54 in enhancing NUE and promoting the growth of Marandu palisadegrass with varying levels of N-urea (0, 25, 50, and 100 mg N kg soil⁻).

View Article and Find Full Text PDF

Livestock manure, a common fertilizer in Chinese agriculture, can lead to environmental contamination and potential health risks due to elevated antibiotic and phosphorus levels. Importantly, the high phosphorus levels initiates transformations of phosphate minerals in soils, especially calcareous soils. These variations in phosphate mineralogy can significantly impact the migration and fate of antibiotics within the soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!