Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fecal Microbiota Transplantation (FMT) represents a promising therapeutic tool under study for several purposes and is currently applied to the treatment of recurrent infection. However, since the use of fresh stool was affected by several issues linked to donor screening, the development of a frozen stool bank is a reliable option to standardize FMT procedures. Nevertheless, different environmental factors impact microbial viability. Herein, we report the effect of different thawing temperatures and storage conditions on bacterial suspensions in the FMT procedure. In total, 20 stool samples were divided into aliquots and tested across a combination of different storing periods (15, 30; 90 days) and thawing procedures (4 °C overnight, room temperature for 1 h; 37 °C for 5 min). Focusing on storage time, our data showed a significant reduction in viability for aerobic and anaerobic bacteria after thawing for 15 days, while no further reductions were observed until after 90 days. Instead, among the different thawing procedures, no significant differences were observed for aerobic bacteria, while for anaerobes, thawing at 37 °C for 5 min was more effective in preserving the bacterial viability. In conclusion, the frozen fecal microbiota remained viable for at least three months, with an excellent recovery rate in all three thawing conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278783 | PMC |
http://dx.doi.org/10.3390/microorganisms12071294 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!