The quality of a cheese is determined by the balance of aroma compounds primarily produced by microorganisms during the transformation of milk into ripened cheese. The microorganisms, along with the technological parameters used in cheese production, influence aroma formation. The perception of these compounds is further influenced by the composition and structure of the cheese. This study aimed to characterize how cheese composition affects aroma compound production, release, and perception. Sixteen cheeses were produced under controlled conditions, followed by a quantitative descriptive analysis post ripening. Aroma composition was analyzed using HS-SPME-GC-MS, and a dynamic sensory evaluation (TCATA) was combined with nosespace analysis using PTR-ToF-MS. Image analysis was also conducted to characterize cheese structure. Cheese fat and whey lactose contents were identified as key factors in the variability of sensory attributes. GC-MS analyses identified 27 compounds correlated with sensory attributes. In terms of aroma compound release, 23 ions were monitored, with fat, salt, and lactose levels significantly affecting the release of most compounds. Therefore, cheese fat, salt, and whey lactose levels, as well as the types of microbial strains, play a role in influencing the composition, structure, release of aroma compounds, and sensory perception.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11279617 | PMC |
http://dx.doi.org/10.3390/molecules29143412 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!