Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
, isolated from a pond adjacent to a cement plant, was cultured using flue gas collected directly from kiln emissions using 20 L and 25000 L photobioreactors. Lipids, proteins, and polysaccharides were analyzed to understand their overall composition for potential applications. The lipid content ranged from 17.97% to 21.54% of the dry biomass, with carotenoid concentrations between 8.4 and 9.2 mg/g. Lutein accounted for 55% of the total carotenoids. LC/MS analysis led to the identification of 71 intact triacylglycerols, 8 lysophosphatidylcholines, 10 phosphatidylcholines, 9 monogalactosyldiacylglycerols, 12 digalactosyldiacylglycerols, and 1 sulfoquinovosyl diacylglycerol. Palmitic acid, oleic acid, linoleic acid, and α-linolenic acid were the main fatty acids. Polyunsaturated fatty acid covers ≥ 56% of total fatty acids. Protein isolates and polysaccharides were also extracted. Protein purity was determined to be ≥75% by amino acid analysis, with all essential amino acids present. Monomer analysis of polysaccharides suggested that they are composed of mainly D-(+)-mannose, D-(+)-galactose, and D-(+)-glucose. The results demonstrate that there is no adverse effect on the metabolite profile of biomass cultured using flue gas as the primary carbon source, revealing the possibility of utilizing such algal biomass in industrial applications such as animal feed, sources of cosmeceuticals, and as biofuel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11279589 | PMC |
http://dx.doi.org/10.3390/molecules29143368 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!