Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Element profiling is a powerful tool for detecting fraud related to claims of geographical origin. However, these methods must be continuously developed, as mixtures of different origins in particular offer great potential for adulteration. This study is a proof of principle to determine whether elemental profiling is suitable for detecting mixtures of the same food but from different origins and whether calculated data from walnut mixtures could help to reduce the measurement burden. The calculated data used in this study were generated based on measurements of authentic, unadulterated samples. Five different classification models and three regression models were applied in five different evaluation approaches to detect adulteration or even distinguish between adulteration levels (10% to 90%). To validate the method, 270 mixtures of walnuts from different origins were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Depending on the evaluation approach, different characteristics were observed in mixtures when comparing the calculated and measured data. Based on the measured data, it was possible to detect admixtures with an accuracy of 100%, even at low levels of adulteration (20%), depending on the country. However, calculated data can only contribute to the detection of adulterated walnut samples in exceptional cases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11279845 | PMC |
http://dx.doi.org/10.3390/molecules29143350 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!