Microfluidics is an important technology for the biomedical industry and is often utilised in our daily lives. Recent advances in micro-milling technology have allowed for rapid fabrication of smaller and more complex structures, at lower costs, making it a viable alternative to other fabrication methods. The microfluidic chip fabrication developed in this research is a step-by-step process with a self-contained wet milling chamber. Additionally, ethanol solvent bonding is used to allow microfluidic chips to be fully fabricated within approximately an hour. The effect of using this process is tested with quantitative contact profileometery data to determine the expected surface roughness in the microchannels. The effect of surface roughness on the controllability of microparticles is tested in functional microfluidic chips using image processing to calculate particle velocity. This process can produce high-quality channels when compared with similar studies in the literature and surface roughness affects the control of microparticles. Lastly, we discuss how the outcomes of this research can produce rapid and higher-quality microfluidic devices, leading to improvement in the research and development process within the fields of science that utilise microfluidic technology. Such as medicine, biology, chemistry, ecology, and aerospace.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11279306 | PMC |
http://dx.doi.org/10.3390/mi15070905 | DOI Listing |
Acta Bioeng Biomech
June 2024
4Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Wrocław, Poland.
: Caries or iatrogenic thermal trauma of the teeth have a significant impact on the dental pulp structure connected with stimulation of angiogenesis and lymphangiogenesis. Therefore, the aim of the study was to identify the difference in the rate of heat dissipation by vessels present in the dental pulp. : Freshly extracted healthy ( = 10) and carious ( = 14) molars and premolars were cut on a diamond saw and subjected to active thermographic examination and then subjected to lymphoscintigraphy and X-ray examination.
View Article and Find Full Text PDFChem Rev
January 2025
Department of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States.
The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface-adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
Colloidal gels, ubiquitous in industrial applications, can undergo reversible solid-to-liquid transitions. Recent work demonstrates that adding surface roughness to primary particles enhances the toughness and influences the self-healing properties of colloidal gels. In the present work, we first use colloidal probe atomic force microscopy (CP-AFM) to assess the quantitative changes in adhesive and frictional forces between thermoresponsive particles as a function of their roughness.
View Article and Find Full Text PDFJ Contemp Dent Pract
October 2024
Department of Prosthodontics, Government Dental College, Kozhikode, Kerala, India, Orcid: https://orcid.org/0000-0003-1456-3851.
Aim: The aim of this study was to compare the surface roughness and color stability of polyetheretherketone (PEEK) with those of conventional interim prosthetic materials like polymethylmethacrylate, bis-acrylic composite, and rubberized diurethane dimethacrylate, following immersion in solutions of varying pH value.
Materials And Methods: A total of 320 circular discs with 10 mm diameter and 2 mm height were divided based on the fabrication ( = 80)-group A: polymethylmethacrylate; group B: bis-acrylic composite; group R: rubberized diurethane; and group P: hot-pressed PEEK-and were subjected to baseline measurement of roughness ( = 40) and color ( = 40) using 3D profilometer and UV-Vis spectrophotometer, respectively. Later, 10 samples from each group were immersed in distilled water, black coffee, green tea, and Pepsi, respectively, for 120 days, and measurements of roughness and color were repeated.
J Dent Sci
January 2025
School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
Background/purpose: Early osseointegration of titanium (Ti) dental implants relies on the surface topography. Surface modification of Ti seeks to enhance bone regeneration around implants. Acid etching is the simple, less technique sensitive and cost-effective technique for surface treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!