Morse code recognition plays a very important role in the application of human-machine interaction. In this paper, based on the carbon nanotube (CNT) and polyurethane sponge (PUS) composite material, a flexible tactile CNT/PUS sensor with great piezoresistive characteristic is developed for detecting Morse code precisely. Thirty-six types of Morse code, including 26 letters (A-Z) and 10 numbers (0-9), are applied to the sensor. Each Morse code was repeated 60 times, and 2160 (36 × 60) groups of voltage time-sequential signals were collected to construct the dataset. Then, smoothing and normalization methods are used to preprocess and optimize the raw data. Based on that, the long short-term memory (LSTM) model with excellent feature extraction and self-adaptive ability is constructed to precisely recognize different types of Morse code detected by the sensor. The recognition accuracies of the 10-number Morse code, the 26-letter Morse code, and the whole 36-type Morse code are 99.17%, 95.37%, and 93.98%, respectively. Meanwhile, the Gated Recurrent Unit (GRU), Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), and Random Forest (RF) models are built to distinguish the 36-type Morse code (letters of A-Z and numbers of 0-9) based on the same dataset and achieve the accuracies of 91.37%, 88.88%, 87.04%, and 90.97%, respectively, which are all lower than the accuracy of 93.98% based on the LSTM model. All the experimental results show that the CNT/PUS sensor can detect the Morse code's tactile feature precisely, and the LSTM model has a very efficient property in recognizing Morse code detected by the CNT/PUS sensor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278602PMC
http://dx.doi.org/10.3390/mi15070864DOI Listing

Publication Analysis

Top Keywords

morse code
44
morse
12
cnt/pus sensor
12
lstm model
12
code
10
code recognition
8
flexible tactile
8
long short-term
8
short-term memory
8
types morse
8

Similar Publications

Fiber strain sensors show good application potential in the field of wearable smart fabrics and equipment because of their characteristics of easy deformation and weaving. However, the integration of fiber strain sensors with sensitive response, good stretchability, and effective practical application remains a challenge. Herein, this paper proposes a new strategy based on 3D stress complementation through pre-stretching and swelling processes, and the polydimethylsiloxane (PDMS)/silver nanoparticle (AgNPs)/MXene/carbon nanotubes (CNTs) fiber sensor with the bilayer labyrinthian wrinkles conductive network on the PU fiber surface is fabricated.

View Article and Find Full Text PDF

Trichoscopic Evaluation of Focal Non-Cicatricial Alopecia in Egyptian Children.

Dermatol Pract Concept

October 2024

Dermatology and Venereology Department, Faculty of Medicine for Girls, El-Zahraa Hospital, Al-Azhar University, Cairo, Egypt.

Article Synopsis
  • Dermoscopy and trichoscopy are noninvasive diagnostic tools used to identify structures and conditions related to hair and scalp disorders that aren't visible to the naked eye.
  • A study involving 200 Egyptian children with focal non-cicatricial alopecia identified alopecia areata and tinea capitis as the most common diagnoses, with trichoscopy highlighting specific features that aid in distinguishing these conditions.
  • The findings suggest that incorporating trichoscopy into routine evaluations greatly enhances diagnostic accuracy and helps in the effective treatment of hair loss disorders in children.
View Article and Find Full Text PDF

Ultrafast self-healing zwitterionic hydrogels reinforced by carboxymethyl chitosan-oxidized hyaluronic acid and graphene oxide toward high-performance strain sensors.

Int J Biol Macromol

December 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing 210037, China. Electronic address:

Inspired by the inherent recuperative ability of organisms in nature, researchers have dedicated significant efforts towards developing self-healing hydrogel sensors. Although the works on self-healing hydrogels have made great progress, achieving hydrogel sensors combining with rapid and efficient healing capability, excellent mechanical properties and high sensing sensitivity remains a challenging task. In this study, we proposed a novel approach for fabricating a self-healing conductive zwitterionic hydrogel sensor by adding carboxymethyl chitosan (CMCs) and oxidized hyaluronic acid (OHA) to induce dynamic Schiff base reaction, and graphene oxide (GO) nanosheets as physical crosslinker.

View Article and Find Full Text PDF

Adhesive composite hydrogels have received increasing attention in the fields of wearable sensors, electronic skin, and bioelectronic interfaces. However, combining good adhesiveness and high strength in a single composite hydrogel remains challenging. To address this issue, a polydopamine (PDA)-modified nanocellulose (PCNF)/polyacrylamide (PAM) composite hydrogel was developed, which exhibits good adhesiveness (40 kPa), good durability (1500 rpm), excellent frost resistance (-42 °C), and good sensitivity (GF = 1.

View Article and Find Full Text PDF

Neuromorphic systems that can emulate the behavior of neurons have garnered increasing interest across interdisciplinary fields due to their potential applications in neuromorphic computing, artificial intelligence and brain-machine interfaces. However, the optical modulation of nanofluidic ion transport for neuromorphic functions has been scarcely reported. Herein, inspired by biological systems that rely on ions as signal carriers for information perception and processing, we present a nanofluidic transistor based on a metal-organic framework membrane (MOFM) with optically modulated ion transport properties, which can mimic the functions of biological synapses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!