Label-Free Continuous Cell Sorting Using Optofluidic Chip.

Micromachines (Basel)

School of Mechanical Engineering, Hebei University of Technology, Tianjin 300000, China.

Published: June 2024

In the field of biomedicine, efficiently and non-invasively isolating target cells has always been one of the core challenges. Optical fiber tweezers offer precise and non-invasive manipulation of cells within a medium and can be easily integrated with microfluidic systems. Therefore, this paper investigated the mechanism of cell manipulation using scattering force with optical fiber tweezers. We employed flat-ended single-mode fiber to drive and sort cells and derived the corresponding scattering force formula based on the T-matrix model. A single-mode optical tweezers system for cell sorting was developed, and an optofluidic experimental platform was constructed that effectively integrates the optical system with microfluidic chips. The chip, featuring an expanded cross-channel design, successfully achieved continuous separation of yeast cells (8~10 µm in diameter) and polystyrene microspheres (15~20 µm in diameter), with a sorting efficiency of up to 86% and maintaining viability in approximately 90% of the yeast cells. Compared to other sorting systems, this system does not require labeling and can achieve continuous sorting with cell viability at a lower cost of instrumentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278515PMC
http://dx.doi.org/10.3390/mi15070818DOI Listing

Publication Analysis

Top Keywords

cell sorting
8
optical fiber
8
fiber tweezers
8
scattering force
8
yeast cells
8
µm diameter
8
sorting
5
cells
5
label-free continuous
4
cell
4

Similar Publications

Background: Head and neck squamous cell carcinoma (HNSCC), a highly invasive malignancy with a poor prognosis, is one of the most common cancers globally. Circular RNAs (circRNAs) have become key regulators of human malignancies, but further studies are necessary to fully understand their functions and possible causes in HNSCC.

Methods: CircCCT2 expression levels in HNSCC tissues and cells were measured via qPCR.

View Article and Find Full Text PDF

Objective: The neuropeptide calcitonin gene-related peptide (CGRP) has been established to be a key signaling molecule in migraine, but little is known about the differences between the two isoforms: αCGRP and βCGRP. Previous studies have been hampered by their close similarity, making the development of specific antibodies nearly impossible. In this study we sought to test the hypothesis that αCGRP and βCGRP localize differently within the neurons of the mouse trigeminal ganglion (TG), using αCGRP knock out (KO) animals.

View Article and Find Full Text PDF

Decreased STING predicts adverse efficacy in bortezomib regimens and poor survival in multiple myeloma.

Clin Exp Med

January 2025

Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China.

Purpose: STING (stimulator of interferon genes) is involved in viral and bacterial defense through interferon pathway and innate immunity. Increased susceptibility to infection is a common manifestation of multiple myeloma (MM). Thus, we aimed to explore the clinical significance and possible mechanism of STING in MM.

View Article and Find Full Text PDF

Erythroderma is a severe and heterogeneous inflammatory skin condition with little guidance on the approach to management in cases of unknown etiology. To guide therapeutic selection, we sought to create an immunophenotyping platform able to identify aberrant cell populations and cytokines in subtypes of erythroderma. We performed high-parameter flow cytometry on peripheral blood mononuclear cells (PBMCs) and whole blood of a patient with refractory idiopathic erythroderma, erythrodermic patients with Sézary syndrome and pityriasis rubra pilaris, and healthy controls.

View Article and Find Full Text PDF

This study analyzes the laboratory characteristics and prognosis of patients between PML-RARα negative APL and PML-RARα positive APL and compares the differences in order to improve the understanding of this rare APL and guide clinical diagnosis and treatment. A total of 81 patients with newly diagnosed APL based on bone marrow cell morphology were included, with 14 in the PML-RARα gene negative group and 67 in the PML-RARα gene positive group. The sex, age, peripheral blood routine test, coagulation related indicators, bone marrow cell morphology, flow cytometric immunophenotype, abnormal chromosome expression and prognosis of the 2 groups were analyzed and compared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!