Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Historically, cardiovascular prevention has been predominantly focused on stress-induced ischemia, but recent trials have challenged this paradigm, highlighting the emerging role of vulnerable, non-flow-limiting coronary plaques, leading to a shift towards integrating plaque morphology with functional data into risk prediction models. Coronary computed tomography angiography (CCTA) represents a high-resolution, low-risk, and largely available non-invasive modality for the precise delineation of plaque composition, morphology, and inflammatory activity, further enhancing our ability to stratify high-risk plaque and predict adverse cardiovascular outcomes. Coronary artery calcium (CAC) scoring, derived from CCTA, has emerged as a promising tool for predicting future cardiovascular events in asymptomatic individuals, demonstrating incremental prognostic value beyond traditional cardiovascular risk factors in terms of myocardial infarction, stroke, and all-cause mortality. Additionally, CCTA-derived information on adverse plaque characteristics, geometric characteristics, and hemodynamic forces provides valuable insights into plaque vulnerability and seems promising in guiding revascularization strategies. Additionally, non-invasive assessments of epicardial and pericoronary adipose tissue (PCAT) further refine risk stratification, adding prognostic significance to coronary artery disease (CAD), correlating with plaque development, vulnerability, and rupture. Moreover, CT imaging not only aids in risk stratification but is now emerging as a screening tool able to monitor CAD progression and treatment efficacy over time. Thus, the integration of CAC scoring and PCAT evaluation into risk stratification algorithms, as well as the identification of high-risk plaque morphology and adverse geometric and hemodynamic characteristics, holds promising results for guiding personalized preventive interventions, helping physicians in identifying high-risk individuals earlier, tailoring lifestyle and pharmacological interventions, and improving clinical outcomes in their patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278082 | PMC |
http://dx.doi.org/10.3390/jcm13144277 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!