This paper presents the methodology developed for underwater measurements using electrochemical impedance spectroscopy (EIS) technique, aimed at determining the resistance of an epoxy coating applied in seawater to the legs of an oil production platform. Performing such underwater tests in an offshore environment was technically challenging. The results of measurements obtained on the platform were confronted with comparative results obtained in the laboratory, where the properties of the coating applied in water collected from the Baltic Sea (thickness, hardness, adhesion, and electrical resistance) were examined. This made it possible to conclude about the correctness of the paint coating application by divers on the legs of the platform. The single-layer epoxy coating applied by brush to the platform legs had a resistance above 10 kΩ∙cm and thus met the assumed minimum resistance of the protective coating cooperating with cathodic protection as the anti-corrosion protection system of the platform legs. The synergy of these two technologies ensures full protection of offshore structures against corrosion. Measurements of the potential of the platform legs confirmed this. Before painting, the potential value at a depth of 0-15 m was 310 ÷ 320 mV versus the zinc reference electrode, while after painting the potential value decreased to 220 ÷ 240 mV, which means that the effect of full cathodic protection was achieved and the platform legs were protected from corrosion. The developed methodology for underwater EIS measurements on the high seas can be applied to any underwater metal structure to assess the quality of protective coatings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278692 | PMC |
http://dx.doi.org/10.3390/ma17143580 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!