Compound Castings for the Coke Industry.

Materials (Basel)

Department of Foundry Engineering, Silesian University of Technology, 7 Towarowa Street, 44-100 Gliwice, Poland.

Published: July 2024

In this paper, issues related to the technology of compound castings composed of two parts, i.e., the working layer and the supporting part, made of X46Cr13 high-chromium steel and EN-GJL-HB 255 grey cast iron, respectively, in a liquid-solid system by pre-installing a monolithic insert in the mould cavity are presented. As a part of the research, the mechanism of formation of transitional zones in the bonding area of the above-mentioned two alloys was identified and described. It was shown that the phenomenon that determines the formation of a permanent bond between the joined materials is the transport of C and heat from the "high-carbon and hot" material of the supporting part poured into the mould in the form of liquid cast iron to the "low-carbon and cold" material of the working layer placed in the form of a steel monolithic insert inside the mould cavity. In the paper, the suitability of the compound castings technology developed for use in the coke industry is also presented. Full-size high-chromium steel-grey cast iron compound casting plates designed for the coke quenching car lining were positively verified in real coke plant operating conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11279357PMC
http://dx.doi.org/10.3390/ma17143539DOI Listing

Publication Analysis

Top Keywords

compound castings
12
cast iron
12
coke industry
8
working layer
8
monolithic insert
8
mould cavity
8
compound
4
coke
4
castings coke
4
industry paper
4

Similar Publications

This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.

View Article and Find Full Text PDF

Exposure to mid-energy radiation poses significant health risks, necessitating the development of effective shielding materials. Traditional lead-based shields, while effective, have significant drawbacks including toxicity and environmental concerns. This study investigates the potential of lead-free epoxy resin nanocomposites, incorporating bismuth oxide, nickel oxide, and cerium oxide, for mid-energy radiation protection.

View Article and Find Full Text PDF

Context: 3,4-Bis(3-nitrofurazan-4-yl) furoxan (DNTF) is a typical low-melting-point, high-energy-density compound that can serve as a cast carrier explosive. Therefore, understanding the safety of DNTF under different casting processes is of great significance for its efficient application. This study employed molecular dynamics simulations to investigate the effects of temperature and pressure on the self-diffusion characteristics and mechanical sensitivity of DNTF.

View Article and Find Full Text PDF

Eco-friendly, bioactive and edible films from renewable resources are increasingly regarded as viable replacements for petroleum-based packaging. This study investigates the application of macroalgae powder (ULP) as an active additive in crab () chitosan-based films for natural food packaging. Films with ULP concentrations of 0.

View Article and Find Full Text PDF

Pyrophosphate-stabilized amorphous calcium carbonates (PyACC) are promising compounds for bone repair due to their ability to release calcium, carbonate, and phosphate ions following pyrophosphate hydrolysis. However, shaping these metastable and brittle materials using conventional methods remains a challenge, especially in the form of macroporous scaffolds, yet essential to promote cell colonization. To overcome these limitations, this article describes for the first time the design and multiscale characterization of freeze-cast alginate (Alg)-PyACC nanocomposite scaffolds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!