Aerosol infrared stealth technology is a highly effective method to reduce the intensity of infrared radiation by releasing aerosol particles around the hot exhaust plume. This paper uses a Computational Fluid Dynamics (CFD) two-phase flow model to simulate the exhaust plume fields of three kinds of engine nozzles containing aerosol particles. The Planck-weighted narrow spectral band gas model and the Reverse Monte Carlo method are used for infrared radiation transfer calculations to analyze the influencing factors and laws for the suppression of the infrared radiation properties of exhaust plumes by four typical aerosol particles. The simulation calculation results show that the radiation suppression efficiency of aerosol particles on the exhaust plume reaches its maximum value at a detection angle () of 0° and decreases with increasing , reaching its minimum value at 90°. Reducing the aerosol particle size and increasing the aerosol mass flux can enhance the suppression effect. In the exhaust plume studied in this paper, the radiation suppression effect is best when the particle size is 1 μm and the mass flux is 0.08 kg/s. In addition, the inhibition of aerosol particles varies among different materials, with graphite having the best inhibition effect, followed by HO, MgO, and SiO. Solid particles will increase the radiation intensity and change the spectral radiation characteristics of the exhaust plume at detection angles close to the vertical nozzle axis due to the scattering effect. Finally, this paper analyzed the suppression effects of three standard nozzle configurations under the same aerosol particle condition and found that the S-bend nozzle provides better suppression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278326PMC
http://dx.doi.org/10.3390/ma17143505DOI Listing

Publication Analysis

Top Keywords

aerosol particles
24
exhaust plume
20
infrared radiation
16
aerosol
10
radiation
8
exhaust plumes
8
radiation suppression
8
aerosol particle
8
particle size
8
mass flux
8

Similar Publications

Toxicological effects of long-term continuous exposure to ambient air on human bronchial epithelial Calu-3 cells exposed at the air-liquid interface.

Environ Res

January 2025

Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Munich, 85764, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, 18051, Germany.

Air pollution significantly contributes to the global burden of respiratory and cardiovascular diseases. While single source/compound studies dominate current research, long-term, multi-pollutant studies are crucial to understanding the health impacts of environmental aerosols. Our study aimed to use the first air-liquid interface (ALI) aerosol exposure system adapted for long-term in vitro exposures for ambient air in vitro exposure.

View Article and Find Full Text PDF

Particle emissions study from tire sample with nano-silver tracer from different steps of its life cycle. A new approach to trace emissions of tire microparticles.

Sci Total Environ

January 2025

Direction Milieux et impacts sur le vivant, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France.

Emissions due to tires retread/repair and incineration are a cause of concern owing to the presence of nanoparticles in the products. The assessment exposure to humans hereto related is a challenge in an environmental context. The first object of this work is to develop a method to characterize the emission sources using online (counting and sizing) and offline measurements.

View Article and Find Full Text PDF

Design and Evaluation of 3D-Printed Lattice Structures as High Flow Rate Aerosol Filters.

ACS Appl Eng Mater

December 2024

Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.

Article Synopsis
  • Aerosol contamination is a significant issue across various sectors, and the study focuses on using 3D-printed open foam-like lattice structures as an efficient solution for filtration.
  • The researchers created and tested four different lattice geometries (Cubic, Kelvin, Octahedron, and Weaire-Phelan) to determine their effectiveness in capturing aerosol particles, finding that filtration performance improves with the specific surface area of the filter design.
  • The study also identified mechanisms of particle deposition and established that 3D-printed lattices can achieve high filtration efficiencies (10-100%) under varying airflow conditions, indicating their potential as customizable and effective aerosol filters while addressing existing production challenges.
View Article and Find Full Text PDF
Article Synopsis
  • Fungal contamination in hospital air can impact the health of staff, patients, and caregivers, with a study in Wuhan revealing that factors like temperature, humidity, and seasonal changes significantly influence fungal concentration rather than disease type or personnel density.
  • The analysis showed that airborne fungal particle sizes are normally distributed, with the highest proportions found in specific size ranges, but the median diameter remained below 3.19 μm across different departments in both winter and summer.
  • The findings suggest a need for improved filtration efficiency for specific fungal particle sizes and the use of appropriate antifungal treatments and hygiene practices in hospital air management.
View Article and Find Full Text PDF

Inhalation exposure to respirable crystalline silica (RCS) during the fabrication of engineered stone-based kitchen countertops has been on the rise in recent years and has become a significant occupational health problem in the United States and globally. Little is known about the presence of nanocrystalline silica (NCS), i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!