The Evaluation of Interface Quality in HfO Films Probed by Time-Dependent Second-Harmonic Generation.

Materials (Basel)

Center of Free Electron Laser & High Magnetic Field, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China.

Published: July 2024

Time-dependent second-harmonic generation (TD-SHG) is an emerging sensitive and fast method to qualitatively evaluate the interface quality of the oxide/Si heterostructures, which is closely related to the interfacial electric field. Here, the TD-SHG is used to explore the interface quality of atomic layer deposited HfO films on Si substrates. The critical SHG parameters, such as the initial SHG signal and characteristic time constant, are compared with the fixed charge density (Qox) and the interface state density (Dit) extracted from the conventional electrical characterization method. It reveals that the initial SHG signal linearly decreases with the increase in Qox, while Dit is linearly correlated to the characteristic time constant. It verifies that the TD-SHG is a sensitive and fast method, as well as simple and noncontact, for evaluating the interface quality of oxide/Si heterostructures, which may facilitate the in-line semiconductor test.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11277793PMC
http://dx.doi.org/10.3390/ma17143471DOI Listing

Publication Analysis

Top Keywords

interface quality
16
hfo films
8
time-dependent second-harmonic
8
second-harmonic generation
8
sensitive fast
8
fast method
8
quality oxide/si
8
oxide/si heterostructures
8
initial shg
8
shg signal
8

Similar Publications

Background: Heart failure (HF) is a chronic, progressive condition where the heart cannot pump enough blood to meet the body's needs. In addition to the daily challenges that HF poses, acute exacerbations can lead to costly hospitalizations and increased mortality. High health care costs and the burden of HF have led to the emerging application of new technologies to support people living with HF to stay well while living in the community.

View Article and Find Full Text PDF

Despite the potential of smart home technologies (SHT) to support everyday activities, the implementation rate of such technology in the homes of older adults remains low. The overall aim of this study was to explore factors involved in the decision-making process in adopting SHT among current and future generations of older adults. We also aimed to identify and understand barriers and facilitators that can better support older adults' engagement in everyday activities.

View Article and Find Full Text PDF

Background: Mental health remains among the top 10 leading causes of disease burden globally, and there is a significant treatment gap due to limited resources, stigma, limited accessibility, and low perceived need for treatment. Problem Management Plus, a World Health Organization-endorsed brief psychological intervention for mental health disorders, has been shown to be effective and cost-effective in various countries globally but faces implementation challenges, such as quality control in training, supervision, and delivery. While digital technologies to foster mental health care have the potential to close treatment gaps and address the issues of quality control, their development requires context-specific, interdisciplinary, and participatory approaches to enhance impact and acceptance.

View Article and Find Full Text PDF

Investigate the impact of antimicrobial photodynamic therapy (aPDT) using different photosensitizers (PSs) such as indocyanine green (IG), curcumin (CC), and methylene blue (MB), with or without intracanal application of calcium hydroxide (CH), on the push-out bond strength of glass-fiber posts (GFPs) to intraradicular dentin, the chemical composition of the root substrate, and the sealing of the adhesive interface across different thirds of intraradicular dentin. A total of 112 bovine teeth underwent biomechanical preparation and were divided into eight experimental groups (n = 14 each): Negative control with deionized water; positive control with deionized water + CH; IG group with indocyanine green and infrared laser; IG + CH group; CC group with curcumin and blue LED; CC + CH group; MB group with methylene blue and red laser; and MB + CH group. The push-out bond strength was measured using a universal testing machine (n = 8), and scanning electron microscopy characterized the fracture patterns.

View Article and Find Full Text PDF

Bioaugmented design and functional evaluation of low damage implantable array electrodes.

Bioact Mater

May 2025

State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China.

Implantable neural electrodes are key components of brain-computer interfaces (BCI), but the mismatch in mechanical and biological properties between electrode materials and brain tissue can lead to foreign body reactions and glial scarring, and subsequently compromise the long-term stability of electrical signal transmission. In this study, we proposed a new concept for the design and bioaugmentation of implantable electrodes (bio-array electrodes) featuring a heterogeneous gradient structure. Different composite polyaniline-gelatin-alginate based conductive hydrogel formulations were developed for electrode surface coating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!