Cu-Cu joints have been adopted for ultra-high-density packaging for high-end devices. However, the atomic diffusion rate is notably low at the preferred processing temperature, resulting in clear and distinct weak bonding interfaces, which, in turn, lead to reliability issues. In this study, a new method for eliminating the bonding interfaces using two types of Cu films in Cu-Cu bonding is proposed. The difference in grain size was utilized as the primary driving force for the migration of bonding interfaces/interfacial grain boundaries. Additionally, the columnar nanotwinned Cu structure acted as a secondary driving force, making the migration more significant. When bonded at 300 °C, the grains from one side grew and extended to the bottom, eliminating the bonding interfaces. A mechanism for the evolution of the Cu bonding interfaces/interfacial grain boundaries is proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278137PMC
http://dx.doi.org/10.3390/ma17143467DOI Listing

Publication Analysis

Top Keywords

bonding interfaces
16
cu-cu bonding
8
eliminating bonding
8
driving force
8
bonding interfaces/interfacial
8
interfaces/interfacial grain
8
grain boundaries
8
bonding
7
eliminating cu-cu
4
interfaces
4

Similar Publications

This study aimed to compare the bonding efficacy three bioactive self-adhesive restorative systems to dentin. A total of 80 permanent human molars were utilized in this study. The occlusal enamel was removed to exposed mid-coronal dentin; 40 molars were used for microshear bond strength testing, while the remaining molars were used for micromorphological analysis of restoration/dentin interface.

View Article and Find Full Text PDF

G-CSF modulates innate and adaptive immunity via the ligand-receptor pathway of binding GCSFR in Flounder (Paralichthys olivaceus).

Fish Shellfish Immunol

January 2025

Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, PR China. Electronic address:

Granulocyte colony stimulating factor (G-CSF) has been shown in mammalia to activate a series of signal transduction systems and exert various biological effects, such as controlling the differentiation, proliferation, and survival of granulocytes, promoting the movement of hematopoietic stem cells from the bone marrow to the bloodstream, and triggering the development of T cells, dendritic cells, and immune tolerance in transplants. In this study, the mRNA of flounder G-CSF (PoG-CSF) and its receptor (PoGCSFR) were detected and widely expressed in all examined tissues with the highest expression in peritoneal cells. G-CSF and GCSFR cells were observed to be abundantly distributed in the leukocytes from the peritoneal cavity, followed by head kidney.

View Article and Find Full Text PDF

Interfacial sorption of 17β-E2 on nano-microplastics: effects of particle size, functional groups and hydrochemical conditions.

Environ Res

January 2025

Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, Liaoning, China. Electronic address:

Nano-microplastics and 17β-E2 have been frequently detected as emerging high-concern pollutants in aquatic systems, and their interaction at the solid/liquid interface has become a research focus in environmental studies. The interfacial sorption kinetics and equilibrium characteristics of 17β-estradiol (17β-E2) on nano-polystyrene (Nano-PS) with different particle sizes and organic functional group modifications were systematically investigated in aqueous environments in this study. The interfacial interaction mechanism between Nano-PS particles and 17β-E2 was elucidated by utilizing SEM, FTIR, XPS and BET techniques.

View Article and Find Full Text PDF

Comparison of Hydrogen Bonded Organic Framework with Reduced Graphene Oxide-Pd Based Nanocatalyst: Which One Is More Efficient for Entrapment of Nitrophenol Pollutants?

Langmuir

January 2025

Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran.

In this study, a Pd nanoparticles@hydrogen-bonded organic framework (Pd NPs@HOF) thin film was fabricated at the toluene-water interface. The HOF was formed through the interaction of trimesic acid (TMA) and melamine (Mel) in the water phase, while Pd(0) was produced from the reduction of [PdCl(cod)] in the organic phase. The as-synthesized Pd NPs@HOF thin film was demonstrated to be an effective catalyst for the selective reduction of -nitrophenol and -nitrophenol to -aminophenol and -aminophenol.

View Article and Find Full Text PDF

Bioinspired Antiswelling Hydrogel Sensors with High Strength and Rapid Self-Recovery for Underwater Information Transmission.

ACS Appl Mater Interfaces

January 2025

School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

Hydrogel-based sensors typically demonstrate conspicuous swelling behavior in aqueous environments, which can severely compromise the mechanical integrity and distort sensing signals, thereby considerably constraining their widespread applicability. Drawing inspiration from the multilevel heterogeneous structures in biological tissues, an antiswelling hydrogel sensor endowed with high strength, rapid self-recovery, and low swelling ratio was fabricated through a water-induced phase separation and coordination cross-linking strategy. A dense heterogeneous architecture was developed by the integration of "rigid" quadridentate carboxyl-Zr coordination bonds and "soft" hydrophobic unit-rich regions featuring π-π stacking and cation-π interactions into the hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!