Introduction: Female bone health is influenced by familial resemblance, health parameters and maturational periods (puberty and menopause); this combination has been researched using familial multi-generational cross-sectional studies.

Aim: This scoping review aimed to compile bone health research which uses sexually mature (grandmother-) mother-daughter pairs (and triads) and to determine the trends in its methodologies and familial comparisons.

Methods: The Joanna Briggs Institute methodology for scoping reviews was used. Extraction included study and population characteristics, methodology (with an emphasis on imaging) and family-based results.

Results: Twenty-nine studies were included, and their generations were categorized into four developmental categories: late adolescent to young adult, pre-menopause, mixed-menopause, and post-menopause. Eleven different pair/triad combinations were observed; the most common was pre-menopausal daughters and post-menopausal mothers. Dual-energy X-ray absorptiometry (DXA) was the most utilized imaging modality, and the hip was the most imaged region of interest (ROI). Regardless of pairing, imaging modality and ROI, there was often a trend toward significant familial resemblance and heritability (h and h).

Conclusion: This scoping review highlights the trends in bone health linked to familial resemblance, as well as the importance of menopause and late adolescence. This review compiles the commonalities and challenges within these studies to inform future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11277880PMC
http://dx.doi.org/10.3390/life14070819DOI Listing

Publication Analysis

Top Keywords

familial resemblance
16
bone health
16
scoping review
12
pairs triads
8
imaging modality
8
familial
6
health
5
bone
4
resemblance bone
4
health maternal
4

Similar Publications

Technical note: A silenced hybrid 3D-printed self-loading pistol of the YEET family.

Forensic Sci Int

January 2025

Ballistics laboratory, National Institute for Criminalistics and Criminology, Vilvoordsesteenweg 98, Brussels 1120, Belgium. Electronic address:

Since the release of the first 3D-printed firearm, "The Liberator," the occurrence of 3D-printed firearms in criminal activities has increased, highlighting the need for forensic research on these weapons. This study presents a technical examination of a 3D-printed firearm received by the National Institute of Criminalistics and Criminology (NICC), focusing on its design, ballistic performance, and its potential for microscopic comparative analysis. The firearm, resembling a 3D-printed pistol Yeet22, is primarily constructed from polymer parts, with the exception of the firing pin, barrel, and various springs and screws.

View Article and Find Full Text PDF

Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells.

Genes Dev

December 2024

Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom

The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.

View Article and Find Full Text PDF

Gut bacteria from the Enterobacteriaceae family are a major cause of opportunistic infections worldwide. Given their prevalence among healthy human gut microbiomes, interspecies interactions may play a role in modulating infection resistance. Here we uncover global ecological patterns linked to Enterobacteriaceae colonization and abundance by leveraging a large-scale dataset of 12,238 public human gut metagenomes spanning 45 countries.

View Article and Find Full Text PDF

Insights into the catalytic mechanism of archaeal peptidoglycan endoisopeptidases from methanogenic phages.

Int J Biol Macromol

January 2025

Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. Electronic address:

Archaeal peptidoglycan, a crucial component of the cell walls of Methanobacteria and Methanopyri, enhances the tightness of methanogenic cells and their resistance to known lytic enzymes and antibiotics. Although archaeal peptidoglycan endoisopeptidases (Pei) can reportedly degrade archaeal peptidoglycan, their biochemistry is still largely unknown. In this study, we investigated the activity and catalytic properties of the endoisopeptidases PeiW and PeiP using synthesized isopeptides identical to natural substrates.

View Article and Find Full Text PDF

Background: Modern reconstruction algorithms for computed tomography (CT) can exhibit nonlinear properties, including non-stationarity of noise and contrast dependence of both noise and spatial resolution. Model observers have been recommended as a tool for the task-based assessment of image quality (Samei E et al., Med Phys.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!