https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=39063142&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 390631422024072720240729
1422-006725142024Jul19International journal of molecular sciencesInt J Mol SciThe Link between Inflammation, Lipid Derivatives, and Microbiota Metabolites in COVID-19 Patients: Implications on Eating Behaviors and Nutritional Status.789910.3390/ijms25147899Extreme inflammation that continues even after infections can lead to a cytokine storm. In recent times, one of the most common causes of cytokine storm activation has been SARS-CoV-2 infection. A cytokine storm leads to dysregulation and excessive stimulation of the immune system, producing symptoms typical of post-COVID syndrome, including chronic fatigue, shortness of breath, joint pain, trouble concentrating (known as "brain fog"), and even direct organ damage in the heart, lungs, kidneys, and brain. This work summarizes the current knowledge regarding inflammation and the cytokine storm related to SARS-CoV-2 infection. Additionally, changes in lipid metabolism and microbiota composition under the influence of inflammation in COVID-19, along with the possible underlying mechanisms, are described. Finally, this text explores potential health implications related to changes in eating behaviors and nutritional status in COVID-19 patients. Although research on the cytokine storm is still ongoing, there is convincing evidence suggesting that severe immune and inflammatory responses during the acute phase of COVID-19 may lead to long-term health consequences. Understanding these links is key to developing treatment strategies and supporting patients after infection.HawryłkowiczViktoriaVDepartment of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland.StasiewiczBeataB0000-0003-0718-9101Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Sloneczna 45f, 10-718 Olsztyn, Poland.MaciejewskaDominikaD0000-0002-2293-6489Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland.Sołek-PastuszkaJoannaJDepartment of Anesthesiology and Intensive Care, Pomeranian Medical University, 71-242 Szczecin, Poland.KomorniakNataliaN0000-0002-4318-1513Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland.Skonieczna-ŻydeckaKarolinaKDepartment of Biochemical Sciences, Pomeranian Medical University, 71-460 Szczecin, Poland.Martynova-Van KleyAlexandraADepartment of Biology, Stephen F. Austin State University at UT, Nacogdoches, TX 75962, USA.StachowskaEwaE0000-0002-4009-1977Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland.eng(Project number: WNoZ 330-05/S/2024).This research was funded by the Pomeranian Medical University in Szczecin, PolandJournal ArticleReview20240719
SwitzerlandInt J Mol Sci1010927911422-0067IMHumansCOVID-19metabolismimmunologycomplicationsNutritional StatusInflammationmetabolismSARS-CoV-2Cytokine Release SyndromeimmunologymetabolismLipid MetabolismFeeding BehaviorGastrointestinal MicrobiomeMicrobiotaCOVID-19SARS-CoV-2cytokinelipidsmetabolitesmicrobiotanutritionThe authors declare no conflicts of interest.
20246720247132024717202472814522024727104420247271132024719epublish39063142PMC1127690310.3390/ijms25147899ijms25147899Jarczak D., Nierhaus A. Cytokine Storm—Definition, Causes, and Implications. Int. J. Mol. Sci. 2022;23:11740. doi: 10.3390/ijms231911740.10.3390/ijms231911740PMC957038436233040Hu B., Huang S., Yin L. The cytokine storm and COVID-19. J. Med. Virol. 2021;93:250–256. doi: 10.1002/jmv.26232.10.1002/jmv.26232PMC736134232592501Eurosurveillance Editorial Team Note from the editors: World Health Organization declares novel coronavirus (2019-nCoV) sixth public health emergency of international concern. Eurosurveillance. 2020;25:200131e. doi: 10.2807/1560-7917.ES.2020.25.5.200131e.10.2807/1560-7917.ES.2020.25.5.200131ePMC701466932019636Statement on the Second Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV) [(accessed on 19 March 2023)]. Available online: https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)Hu B., Guo H., Zhou P., Shi Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021;19:141–154. doi: 10.1038/s41579-020-00459-7.10.1038/s41579-020-00459-7PMC753758833024307WHO Coronavirus (COVID-19) Dashboard. [(accessed on 7 July 2023)]. Available online: https://covid19.who.int.Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.10.1016/S0140-6736(20)30183-5PMC715929931986264Gusev E., Sarapultsev A., Hu D., Chereshnev V. Problems of Pathogenesis and Pathogenetic Therapy of COVID-19 from the Perspective of the General Theory of Pathological Systems (General Pathological Processes) Int. J. Mol. Sci. 2021;22:7582. doi: 10.3390/ijms22147582.10.3390/ijms22147582PMC830465734299201Gusev E., Solomatina L., Zhuravleva Y., Sarapultsev A. The Pathogenesis of End-Stage Renal Disease from the Standpoint of the Theory of General Pathological Processes of Inflammation. Int. J. Mol. Sci. 2021;22:11453. doi: 10.3390/ijms222111453.10.3390/ijms222111453PMC858405634768884Ye Q., Wang B., Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020;80:607–613. doi: 10.1016/j.jinf.2020.03.037.10.1016/j.jinf.2020.03.037PMC719461332283152Fajgenbaum D.C., June C.H. Cytokine Storm. N. Engl. J. Med. 2020;383:2255–2273. doi: 10.1056/NEJMra2026131.10.1056/NEJMra2026131PMC772731533264547Zhou M., Zhang X., Qu J. Coronavirus disease 2019 (COVID-19): A clinical update. Front. Med. 2020;14:126–135. doi: 10.1007/s11684-020-0767-8.10.1007/s11684-020-0767-8PMC711534832240462Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7.10.1038/s41586-020-2012-7PMC709541832015507Walls A.C., Park Y.-J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;183:1735. doi: 10.1016/j.cell.2020.11.032.10.1016/j.cell.2020.11.032PMC783310433306958Zhao X., Chen D., Szabla R., Zheng M., Li G., Du P., Zheng S., Li X., Song C., Li R., et al. Broad and Differential Animal Angiotensin-Converting Enzyme 2 Receptor Usage by SARS-CoV-2. J. Virol. 2020;94:e00940-20. doi: 10.1128/JVI.00940-20.10.1128/JVI.00940-20PMC745954532661139Hirano T., Murakami M. COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity. 2020;52:731–733. doi: 10.1016/j.immuni.2020.04.003.10.1016/j.immuni.2020.04.003PMC717586832325025Hussman J.P. Cellular and Molecular Pathways of COVID-19 and Potential Points of Therapeutic Intervention. Front. Pharmacol. 2020;11:1169. doi: 10.3389/fphar.2020.01169.10.3389/fphar.2020.01169PMC740691632848776Zhou Y., Fu B., Zheng X., Wang D., Zhao C., Qi Y., Sun R., Tian Z., Xu X., Wei H. Aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. Biorxiv. 2020 doi: 10.1101/2020.02.12.945576.10.1101/2020.02.12.945576Chousterman B.G., Swirski F.K., Weber G.F. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 2017;39:517–528. doi: 10.1007/s00281-017-0639-8.10.1007/s00281-017-0639-828555385Ong E.Z., Chan Y.F.Z., Leong W.Y., Lee N.M.Y., Kalimuddin S., Haja Mohideen S.M., Chan K.S., Tan A.T., Bertoletti A., Ooi E.E., et al. A Dynamic Immune Response Shapes COVID-19 Progression. Cell Host Microbe. 2020;27:879–882.e2. doi: 10.1016/j.chom.2020.03.021.10.1016/j.chom.2020.03.021PMC719208932359396Kesmez Can F., Özkurt Z., Öztürk N., Sezen S. Effect of IL-6, IL-8/CXCL8, IP-10/CXCL 10 levels on the severity in COVID-19 infection. Int. J. Clin. Pract. 2021;75:e14970. doi: 10.1111/ijcp.14970.10.1111/ijcp.14970PMC864660234626520Liu J., Li S., Liu J., Liang B., Wang X., Wang H., Li W., Tong Q., Yi J., Zhao L., et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55:102763. doi: 10.1016/j.ebiom.2020.102763.10.1016/j.ebiom.2020.102763PMC716529432361250Marchingo J.M., Sinclair L.V., Howden A.J., Cantrell D.A. Quantitative analysis of how Myc controls T cell proteomes and metabolic pathways during T cell activation. eLife. 2020;9:e53725. doi: 10.7554/eLife.53725.10.7554/eLife.53725PMC705627032022686Chen G., Wu D., Guo W., Cao Y., Huang D., Wang H., Wang T., Zhang X., Chen H., Yu H., et al. Clinical and immunological features of severe and moderate coronavirus disease. J. Clin. Investig. 2019;130:2620–2629. doi: 10.1172/JCI137244.10.1172/JCI137244PMC719099032217835Clinical characteristics with inflammation profiling of long COVID and association with 1-year recovery following hospitalisation in the UK: A prospective observational study. Lancet Respir. Med. 2022;10:761–775. doi: 10.1016/S2213-2600(22)00127-8.10.1016/S2213-2600(22)00127-8PMC903485535472304Montefusco L., Ben Nasr M., D’Addio F., Loretelli C., Rossi A., Pastore I., Daniele G., Abdelsalam A., Maestroni A., Dell’Acqua M., et al. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nat. Metab. 2021;3:774–785. doi: 10.1038/s42255-021-00407-6.10.1038/s42255-021-00407-6PMC993102634035524Richardson S., Hirsch J.S., Narasimhan M., Crawford J.M., McGinn T., Davidson K.W., Barnaby D.P., Becker L.B., Chelico J.D., Cohen S.L., et al. Presenting Characteristics, Comorbidities, and Outcomes among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323:2052–2059. doi: 10.1001/jama.2020.6775.10.1001/jama.2020.6775PMC717762932320003Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:846–848. doi: 10.1007/s00134-020-05991-x.10.1007/s00134-020-05991-xPMC708011632125452Caci G., Albini A., Malerba M., Noonan D.M., Pochetti P., Polosa R. COVID-19 and Obesity: Dangerous Liaisons. J. Clin. Med. 2020;9:2511. doi: 10.3390/jcm9082511.10.3390/jcm9082511PMC746521832759719Kern L., Mittenbühler M.J., Vesting A.J., Ostermann A.L., Wunderlich C.M., Wunderlich F.T. Obesity-Induced TNFα and IL-6 Signaling: The Missing Link between Obesity and Inflammation—Driven Liver and Colorectal Cancers. Cancers. 2018;11:24. doi: 10.3390/cancers11010024.10.3390/cancers11010024PMC635622630591653Mehta S. Nutritional status and COVID-19: An opportunity for lasting change? Clin. Med. 2020;20:270–273. doi: 10.7861/clinmed.2020-0187.10.7861/clinmed.2020-0187PMC735405432341077Muscogiuri G., Pugliese G., Barrea L., Savastano S., Colao A. Commentary: Obesity: The “Achilles heel” for COVID-19? Metabolism. 2020;108:154251. doi: 10.1016/j.metabol.2020.154251.10.1016/j.metabol.2020.154251PMC718498732353356Misumi I., Starmer J., Uchimura T., Beck M.A., Magnuson T., Whitmire J.K. Obesity Expands a Distinct Population of T Cells in Adipose Tissue and Increases Vulnerability to Infection. Cell Rep. 2019;27:514–524.e5. doi: 10.1016/j.celrep.2019.03.030.10.1016/j.celrep.2019.03.030PMC665220630970254Aghili S.M.M., Ebrahimpur M., Arjmand B., Shadman Z., Pejman Sani M., Qorbani M., Larijani B., Payab M. Obesity in COVID-19 era, implications for mechanisms, comorbidities, and prognosis: A review and meta-analysis. Int. J. Obes. 2021;45:998–1016. doi: 10.1038/s41366-021-00776-8.10.1038/s41366-021-00776-8PMC790937833637951Ryan P.M., Caplice N.M. Is Adipose Tissue a Reservoir for Viral Spread, Immune Activation, and Cytokine Amplification in Coronavirus Disease 2019? Obesity. 2020;28:1191–1194. doi: 10.1002/oby.22843.10.1002/oby.22843PMC726452632314868Klonoff D.C., Umpierrez G.E. Letter to the Editor: COVID-19 in patients with diabetes: Risk factors that increase morbidity. Metabolism. 2020;108:154224. doi: 10.1016/j.metabol.2020.154224.10.1016/j.metabol.2020.154224PMC713838132275971Leisman D.E., Ronner L., Pinotti R., Taylor M.D., Sinha P., Calfee C.S., Hirayama A.V., Mastroiani F., Turtle C.J., Harhay M.O., et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 2020;8:1233–1244. doi: 10.1016/S2213-2600(20)30404-5.10.1016/S2213-2600(20)30404-5PMC756752933075298Meng H., Sengupta A., Ricciotti E., Mrčela A., Mathew D., Mazaleuskaya L.L., Ghosh S., Brooks T.G., Turner A.P., Schanoski A.S., et al. Deep phenotyping of the lipidomic response in COVID-19 and non-COVID-19 sepsis. Clin. Transl. Med. 2023;13:e1440. doi: 10.1002/ctm2.1440.10.1002/ctm2.1440PMC1063763637948331Ravindran R., O’Connor E., Gupta A., Luciw P.A., Khan A.I., Dorreh N., Chiang K., Ikram A., Reddy S. Lipid Mediators and Cytokines/Chemokines Display Differential Profiles in Severe versus Mild/Moderate COVID-19 Patients. Int. J. Mol. Sci. 2023;24:13054. doi: 10.3390/ijms241713054.10.3390/ijms241713054PMC1048825037685858Borras E., McCartney M.M., Rojas D.E., Hicks T.L., Tran N.K., Tham T., Juarez M.M., Franzi L., Harper R.W., Davis C.E., et al. Oxylipin concentration shift in exhaled breath condensate (EBC) of SARS-CoV-2 infected patients. J. Breath Res. 2023;17:047103. doi: 10.1088/1752-7163/acea3d.10.1088/1752-7163/acea3dPMC1044649937489864Yeoh Y.K., Zuo T., Lui G.C.-Y., Zhang F., Liu Q., Li A.Y., Chung A.C., Cheung C.P., Tso E.Y., Fung K.S., et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021;70:698–706. doi: 10.1136/gutjnl-2020-323020.10.1136/gutjnl-2020-323020PMC780484233431578Reuben R.C., Beugnon R., Jurburg S.D. COVID-19 alters human microbiomes: A meta-analysis. Front. Cell Infect. Microbiol. 2023;13:1211348. doi: 10.3389/fcimb.2023.1211348.10.3389/fcimb.2023.1211348PMC1043376737600938Kumpitsch C., Koskinen K., Schöpf V., Moissl-Eichinger C. The microbiome of the upper respiratory tract in health and disease. BMC Biol. 2019;17:87. doi: 10.1186/s12915-019-0703-z.10.1186/s12915-019-0703-zPMC683641431699101Ben-Yacov O., Godneva A., Rein M., Shilo S., Lotan-Pompan M., Weinberger A., Segal E. Gut microbiome modulates the effects of a personalised postprandial-targeting (PPT) diet on cardiometabolic markers: A diet intervention in pre-diabetes. Gut. 2023;72:1486–1496. doi: 10.1136/gutjnl-2022-329201.10.1136/gutjnl-2022-329201PMC1035953037137684Hoque M.N., Sarkar M.M.H., Rahman M.S., Akter S., Banu T.A., Goswami B., Jahan I., Hossain M.S., Shamsuzzaman A.K.M., Nafisa T., et al. SARS-CoV-2 infection reduces human nasopharyngeal commensal microbiome with inclusion of pathobionts. Sci. Rep. 2021;11:24042. doi: 10.1038/s41598-021-03245-4.10.1038/s41598-021-03245-4PMC867427234911967Sun Z., Song Z.-G., Liu C., Tan S., Lin S., Zhu J., Dai F.-H., Gao J., She J.-L., Mei Z., et al. Gut microbiome alterations and gut barrier dysfunction are associated with host immune homeostasis in COVID-19 patients. BMC Med. 2022;20:24. doi: 10.1186/s12916-021-02212-0.10.1186/s12916-021-02212-0PMC876994535045853Ren Z., Wang H., Cui G., Lu H., Wang L., Luo H., Chen X., Ren H., Sun R., Liu W., et al. Alterations in the human oral and gut microbiomes and lipidomics in COVID-19. Gut. 2021;70:1253–1265. doi: 10.1136/gutjnl-2020-323826.10.1136/gutjnl-2020-323826PMC804259833789966Yun Y., Chang Y., Kim H.-N., Ryu S., Kwon M.-J., Cho Y.K., Kim H.-L., Cheong H.S., Joo E.-J. Alterations of the Gut Microbiome in Chronic Hepatitis B Virus Infection Associated with Alanine Aminotransferase Level. J. Clin. Med. 2019;8:173. doi: 10.3390/jcm8020173.10.3390/jcm8020173PMC640713530717396Sokol H., Landman C., Seksik P., Berard L., Montil M., Nion-Larmurier I., Bourrier A., Le Gall G., Lalande V., De Rougemont A., et al. Fecal microbiota transplantation to maintain remission in Crohn’s disease: A pilot randomized controlled study. Microbiome. 2020;8:12. doi: 10.1186/s40168-020-0792-5.10.1186/s40168-020-0792-5PMC699814932014035Ejtahed H.-S., Angoorani P., Soroush A.-R., Hasani-Ranjbar S., Siadat S.-D., Larijani B. Gut microbiota-derived metabolites in obesity: A systematic review. Biosci. Microbiota Food Health. 2020;39:65–76. doi: 10.12938/bmfh.2019-026.10.12938/bmfh.2019-026PMC739291032775123Sencio V., Machado M.G., Trottein F. The lung–gut axis during viral respiratory infections: The impact of gut dysbiosis on secondary disease outcomes. Mucosal. Immunol. 2021;14:296–304. doi: 10.1038/s41385-020-00361-8.10.1038/s41385-020-00361-8PMC783565033500564Serrano-Villar S., Talavera-Rodríguez A., Gosalbes M.J., Madrid N., Pérez-Molina J.A., Elliott R.J., Navia B., Lanza V.F., Vallejo A., Osman M., et al. Fecal microbiota transplantation in HIV: A pilot placebo-controlled study. Nat. Commun. 2021;12:1139. doi: 10.1038/s41467-021-21472-1.10.1038/s41467-021-21472-1PMC789255833602945Xu R., Lu R., Zhang T., Wu Q., Cai W., Han X., Wan Z., Jin X., Zhang Z., Zhang C. Temporal association between human upper respiratory and gut bacterial microbiomes during the course of COVID-19 in adults. Commun. Biol. 2021;4:240. doi: 10.1038/s42003-021-01796-w.10.1038/s42003-021-01796-wPMC789306233603076Zuo T., Liu Q., Zhang F., Lui G.C.-Y., Tso E.Y., Yeoh Y.K., Chen Z., Boon S.S., Chan F.K., Chan P.K., et al. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut. 2021;70:276–284. doi: 10.1136/gutjnl-2020-322294.10.1136/gutjnl-2020-322294PMC738574432690600Zuo T., Zhang F., Lui G.C.Y., Yeoh Y.K., Li A.Y.L., Zhan H., Wan Y., Chung A.C.K., Cheung C.P., Chen N., et al. Alterations in Gut Microbiota of Patients with COVID-19 during Time of Hospitalization. Gastroenterology. 2020;159:944–955.e8. doi: 10.1053/j.gastro.2020.05.048.10.1053/j.gastro.2020.05.048PMC723792732442562Jochems S.P., Ferreira D.M., Smits H.H. Microbiota and compartment matter in the COVID-19 response. Nat. Immunol. 2021;22:1350–1352. doi: 10.1038/s41590-021-01041-w.10.1038/s41590-021-01041-w34675388Villapol S. Gastrointestinal symptoms associated with COVID-19: Impact on the gut microbiome. Transl. Res. 2020;226:57–69. doi: 10.1016/j.trsl.2020.08.004.10.1016/j.trsl.2020.08.004PMC743821032827705Woodall C.A., McGeoch L.J., Hay A.D., Hammond A. Respiratory tract infections and gut microbiome modifications: A systematic review. PLoS ONE. 2022;17:e0262057. doi: 10.1371/journal.pone.0262057.10.1371/journal.pone.0262057PMC875790535025938Huan Y., Kong Q., Mou H., Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front. Microbiol. 2020;11:582779. doi: 10.3389/fmicb.2020.582779.10.3389/fmicb.2020.582779PMC759619133178164Mohajeri M.H., Brummer R.J.M., Rastall R.A., Weersma R.K., Harmsen H.J.M., Faas M., Eggersdorfer M. The role of the microbiome for human health: From basic science to clinical applications. Eur. J. Nutr. 2018;57((Suppl. S1)):1–14. doi: 10.1007/s00394-018-1703-4.10.1007/s00394-018-1703-4PMC596261929748817Trompette A., Gollwitzer E.S., Pattaroni C., Lopez-Mejia I.C., Riva E., Pernot J., Ubags N., Fajas L., Nicod L.P., Marsland B.J. Dietary Fiber Confers Protection against Flu by Shaping Ly6c- Patrolling Monocyte Hematopoiesis and CD8+ T Cell Metabolism. Immunity. 2018;48:992–1005.e8. doi: 10.1016/j.immuni.2018.04.022.10.1016/j.immuni.2018.04.02229768180Lin R., Xiao M., Cao S., Sun Y., Zhao L., Mao X., Chen P., Tong X., Ou Z., Zhu H., et al. Distinct gut microbiota and health outcomes in asymptomatic infection, viral nucleic acid test re-positive, and convalescent COVID-19 cases. mLife. 2022;1:183–197. doi: 10.1002/mlf2.12022.10.1002/mlf2.12022PMC934960337731585Sokol H., Contreras V., Maisonnasse P., Desmons A., Delache B., Sencio V., Machelart A., Brisebarre A., Humbert L., Deryuter L., et al. SARS-CoV-2 infection in nonhuman primates alters the composition and functional activity of the gut microbiota. Gut Microbes. 2021;13:1893113. doi: 10.1080/19490976.2021.1893113.10.1080/19490976.2021.1893113PMC795196133685349Tang Y., Liu J., Zhang D., Xu Z., Ji J., Wen C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front. Immunol. 2020;11:1708. doi: 10.3389/fimmu.2020.01708.10.3389/fimmu.2020.01708PMC736592332754163Chemudupati M., Kenney A.D., Smith A.C., Fillinger R.J., Zhang L., Zani A., Liu S.-L., Anderson M.Z., Sharma A., Yount J.S. Butyrate Reprograms Expression of Specific Interferon-Stimulated Genes. J. Virol. 2020;94:e00326-20. doi: 10.1128/JVI.00326-20.10.1128/JVI.00326-20PMC739490532461320Friedland R.P., Haribabu B. The role for the metagenome in the pathogenesis of COVID-19. EBioMedicine. 2020;61:103019. doi: 10.1016/j.ebiom.2020.103019.10.1016/j.ebiom.2020.103019PMC753839133038769Jardou M., Lawson R. Supportive therapy during COVID-19: The proposed mechanism of short-chain fatty acids to prevent cytokine storm and multi-organ failure. Med. Hypotheses. 2021;154:110661. doi: 10.1016/j.mehy.2021.110661.10.1016/j.mehy.2021.110661PMC833954634385045Wang S., Huang M., You X., Zhao J., Chen L., Wang L., Luo Y., Chen Y. Gut microbiota mediates the anti-obesity effect of calorie restriction in mice. Sci. Rep. 2018;8:13037. doi: 10.1038/s41598-018-31353-1.10.1038/s41598-018-31353-1PMC611546530158649Kim C.H. Immune regulation by microbiome metabolites. Immunology. 2018;154:220–229. doi: 10.1111/imm.12930.10.1111/imm.12930PMC598022529569377Beaudoin J.J., Bezençon J., Sjöstedt N., Fallon J.K., Brouwer K.L.R. Role of Organic Solute Transporter Alpha/Beta in Hepatotoxic Bile Acid Transport and Drug Interactions. Toxicol. Sci. 2020;176:34–45. doi: 10.1093/toxsci/kfaa052.10.1093/toxsci/kfaa052PMC735717632294204Huang D., Xiong M., Xu X., Wu X., Xu J., Cai X., Lu L., Zhou H. Bile acids elevated by high-fat feeding induce endoplasmic reticulum stress in intestinal stem cells and contribute to mucosal barrier damage. Biochem. Biophys. Res. Commun. 2020;529:289–295. doi: 10.1016/j.bbrc.2020.05.226.10.1016/j.bbrc.2020.05.22632703425Souza P.F.N., Lopes F.E.S., Amaral J.L., Freitas C.D.T., Oliveira J.T.A. A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor. Int. J. Biol. Macromol. 2020;164:66–76. doi: 10.1016/j.ijbiomac.2020.07.174.10.1016/j.ijbiomac.2020.07.174PMC736815232693122Solanki S.S., Singh P., Kashyap P., Sansi M.S., Ali S.A. Promising role of defensins peptides as therapeutics to combat against viral infection. Microb. Pathog. 2021;155:104930. doi: 10.1016/j.micpath.2021.104930.10.1016/j.micpath.2021.104930PMC808428533933603Xia S., Liu M., Wang C., Xu W., Lan Q., Feng S., Qi F., Bao L., Du L., Liu S., et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020;30:343–355. doi: 10.1038/s41422-020-0305-x.10.1038/s41422-020-0305-xPMC710472332231345Thomas T., Stefanoni D., Reisz J.A., Nemkov T., Bertolone L., Francis R.O., Hudson K.E., Zimring J.C., Hansen K.C., Hod E.A., et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight. 2020;5:e140327. doi: 10.1172/jci.insight.140327.10.1172/jci.insight.140327PMC745390732559180Paeslack N., Mimmler M., Becker S., Gao Z., Khuu M.P., Mann A., Malinarich F., Regen T., Reinhardt C. Microbiota-derived tryptophan metabolites in vascular inflammation and cardiovascular disease. Amino Acids. 2022;54:1339–1356. doi: 10.1007/s00726-022-03161-5.10.1007/s00726-022-03161-5PMC964181735451695Camargo S.M.R., Vuille-Dit-Bille R.N., Meier C.F., Verrey F. ACE2 and gut amino acid transport. Clin. Sci. 2020;134:2823–2833. doi: 10.1042/CS20200477.10.1042/CS2020047733140827Nataf S., Pays L. Molecular Insights into SARS-CoV2-Induced Alterations of the Gut/Brain Axis. Int. J. Mol. Sci. 2021;22:10440. doi: 10.3390/ijms221910440.10.3390/ijms221910440PMC850878834638785de Oliveira G.L.V., Oliveira C.N.S., Pinzan C.F., de Salis L.V.V., de Cardoso C.R.B. Microbiota Modulation of the Gut-Lung Axis in COVID-19. Front. Immunol. 2021;12:635471. doi: 10.3389/fimmu.2021.635471.10.3389/fimmu.2021.635471PMC794559233717181Kaur G., Ji X., Rahman I. SARS-CoV2 Infection Alters Tryptophan Catabolism and Phospholipid Metabolism. Metabolites. 2021;11:659. doi: 10.3390/metabo11100659.10.3390/metabo11100659PMC853824434677374de Hernández-Flores T.J., Pedraza-Brindis E.J., Cárdenas-Bedoya J., Ruíz-Carrillo J.D., Méndez-Clemente A.S., Martínez-Guzmán M.A., Iñiguez-Gutiérrez L. Role of Micronutrients and Gut Microbiota-Derived Metabolites in COVID-19 Recovery. Int. J. Mol. Sci. 2022;23:12324. doi: 10.3390/ijms232012324.10.3390/ijms232012324PMC960418936293182Steed A.L., Christophi G.P., Kaiko G.E., Sun L., Goodwin V.M., Jain U., Esaulova E., Artyomov M.N., Morales D.J., Holtzman M.J., et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science. 2017;357:498–502. doi: 10.1126/science.aam5336.10.1126/science.aam5336PMC575340628774928Ruiz-Roso M.B., Knott-Torcal C., Matilla-Escalante D.C., Garcimartín A., Sampedro-Nuñez M.A., Dávalos A., Marazuela M. COVID-19 Lockdown and Changes of the Dietary Pattern and Physical Activity Habits in a Cohort of Patients with Type 2 Diabetes Mellitus. Nutrients. 2020;12:2327. doi: 10.3390/nu12082327.10.3390/nu12082327PMC746873932759636Johnson A.N., Clockston R.L.M., Fremling L., Clark E., Lundeberg P., Mueller M., Graham D.J. Changes in Adults’ Eating Behaviors During the Initial Months of the COVID-19 Pandemic: A Narrative Review. J. Acad. Nutr. Diet. 2023;123:144–194.e30. doi: 10.1016/j.jand.2022.08.132.10.1016/j.jand.2022.08.132PMC944458236075551Grant F., Scalvedi M.L., Scognamiglio U., Turrini A., Rossi L. Eating Habits during the COVID-19 Lockdown in Italy: The Nutritional and Lifestyle Side Effects of the Pandemic. Nutrients. 2021;13:2279. doi: 10.3390/nu13072279.10.3390/nu13072279PMC830847934209271Rodriguez-Besteiro S., Tornero-Aguilera J.F., Fernández-Lucas J., Clemente-Suárez V.J. Gender Differences in the COVID-19 Pandemic Risk Perception, Psychology, and Behaviors of Spanish University Students. Int. J. Environ. Res. Public Health. 2021;18:3908. doi: 10.3390/ijerph18083908.10.3390/ijerph18083908PMC806821633917827Jia P., Liu L., Xie X., Yuan C., Chen H., Guo B., Zhou J., Yang S. Changes in dietary patterns among youths in China during COVID-19 epidemic: The COVID-19 impact on lifestyle change survey (COINLICS) Appetite. 2021;158:105015. doi: 10.1016/j.appet.2020.105015.10.1016/j.appet.2020.10501533121998Batlle-Bayer L., Aldaco R., Bala A., Puig R., Laso J., Margallo M., Vázquez-Rowe I., Antó J.M., Fullana-i-Palmer P. Environmental and nutritional impacts of dietary changes in Spain during the COVID-19 lockdown. Sci. Total Environ. 2020;748:141410. doi: 10.1016/j.scitotenv.2020.141410.10.1016/j.scitotenv.2020.141410PMC739563532798877Sidor A., Rzymski P. Dietary Choices and Habits during COVID-19 Lockdown: Experience from Poland. Nutrients. 2020;12:1657. doi: 10.3390/nu12061657.10.3390/nu12061657PMC735268232503173Rundle A.G., Park Y., Herbstman J.B., Kinsey E.W., Wang Y.C. COVID-19 Related School Closings and Risk of Weight Gain Among Children. Obesity. 2020;28:1008–1009. doi: 10.1002/oby.22813.10.1002/oby.22813PMC744066332227671Opichka K., Smith C., Levine A.S. Problematic Eating Behaviors Are More Prevalent in African American Women Who Are Overweight or Obese Than African American Women Who Are Lean or Normal Weight. Fam. Community Health. 2019;42:81. doi: 10.1097/FCH.0000000000000222.10.1097/FCH.000000000000022230768472Błaszczyk-Bębenek E., Jagielski P., Bolesławska I., Jagielska A., Nitsch-Osuch A., Kawalec P. Nutrition Behaviors in Polish Adults before and during COVID-19 Lockdown. Nutrients. 2020;12:3084. doi: 10.3390/nu12103084.10.3390/nu12103084PMC760152233050404Calder P.C., Carr A.C., Gombart A.F., Eggersdorfer M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients. 2020;12:1181. doi: 10.3390/nu12041181.10.3390/nu12041181PMC746905332756516Gasmi A., Tippairote T., Mujawdiya P.K., Peana M., Menzel A., Dadar M., Gasmi Benahmed A., Bjørklund G. Micronutrients as immunomodulatory tools for COVID-19 management. Clin. Immunol. 2020;220:108545. doi: 10.1016/j.clim.2020.108545.10.1016/j.clim.2020.108545PMC783387532710937Fernandez M.L., Raheem D., Ramos F., Carrascosa C., Saraiva A., Raposo A. Highlights of Current Dietary Guidelines in Five Continents. Int. J. Environ. Res. Public Health. 2021;18:2814. doi: 10.3390/ijerph18062814.10.3390/ijerph18062814PMC800154833802065Bhaskaram P. Micronutrient malnutrition, infection, and immunity: An overview. Nutr. Rev. 2002;60:S40–S45. doi: 10.1301/00296640260130722.10.1301/0029664026013072212035857Cava E., Carbone S. Coronavirus disease 2019 pandemic and alterations of body composition. Curr. Opin. Clin. Nutr. Metab. Care. 2021;24:229–235. doi: 10.1097/MCO.0000000000000740.10.1097/MCO.0000000000000740PMC832985633587365Nehme M., Braillard O., Rodondi P.-Y., Guessous I., CoviCare Study Team Use of complementary medicine and its association with SARS-CoV-2 vaccination during the COVID-19 pandemic: A longitudinal cohort study. Swiss. Med. Wkly. 2023;153:3505. doi: 10.57187/s.3505.10.57187/s.350538579302Seely D., Legacy M., Conte E., Keates C., Psihogios A., Ramsay T., Fergusson D.A., Kanji S., Simmons J.-G., Wilson K. Dietary supplements to reduce symptom severity and duration in people with SARS-CoV-2: A double-blind randomised controlled trial. BMJ Open. 2023;13:e073761. doi: 10.1136/bmjopen-2023-073761.10.1136/bmjopen-2023-073761PMC1053365537739466Mahjoub L., Youssef R., Yaakoubi H., Salah H.B., Jaballah R., Mejri M., Sekma A., Trabelsi I., Nouira S., Khrouf M., et al. Melatonin, vitamins and minerals supplements for the treatment of COVID-19 and COVID-like illness: A prospective, randomized, double-blind multicenter study. Explore. 2023;20:95–100. doi: 10.1016/j.explore.2023.06.009.10.1016/j.explore.2023.06.009PMC1028169537419768Nawaiseh H.K., Abdelrahim D.N., Al-Domi H., AL-Assaf M.S., AL-Nawaiseh F.K. The impact of vitamin D, vitamin C, and zinc supplements on immune status among Jordanian adults during COVID-19: Cross-sectional study findings. BMC Public Health. 2023;23:2251. doi: 10.1186/s12889-023-17172-8.10.1186/s12889-023-17172-8PMC1065243337968651Mehta N., Pokharna P., Shetty S.R. Unwinding the potentials of vitamin C in COVID-19 and other diseases: An updated review. Nutr. Health. 2022;29:415–433. doi: 10.1177/02601060221139628.10.1177/02601060221139628PMC971354036445072Kow C.S., Hasan S.S., Ramachandram D.S. The effect of vitamin C on the risk of mortality in patients with COVID-19: A systematic review and meta-analysis of randomized controlled trials. Inflammopharmacology. 2023;31:3357–3362. doi: 10.1007/s10787-023-01200-5.10.1007/s10787-023-01200-5PMC1011132137071316Sinopoli A., Sciurti A., Isonne C., Santoro M.M., Baccolini V. The Efficacy of Multivitamin, Vitamin A, Vitamin B, Vitamin C, and Vitamin D Supplements in the Prevention and Management of COVID-19 and Long-COVID: An Updated Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients. 2024;16:1345. doi: 10.3390/nu16091345.10.3390/nu16091345PMC1108554238732592SeyedAlinaghi S., Shahidi R., Mojdeganlou H., Akhtaran F.K., Maroufi S.F., Maroufi S.P., Mirzapour P., Karimi A., Khodaei S., Pour M.M., et al. The effect of macronutrient and micronutrient supplements on COVID-19: An umbrella review. J. Health Popul. Nutr. 2024;43:16. doi: 10.1186/s41043-024-00504-8.10.1186/s41043-024-00504-8PMC1082605538287379Maghbooli Z., Sahraian M.A., Jamalimoghadamsiahkali S., Asadi A., Zarei A., Zendehdel A., Varzandi T., Mohammadnabi S., Alijani N., Karimi M., et al. Treatment with 25-Hydroxyvitamin D3 (Calcifediol) Is Associated with a Reduction in the Blood Neutrophil-to-Lymphocyte Ratio Marker of Disease Severity in Hospitalized Patients with COVID-19: A Pilot Multicenter, Randomized, Placebo-Controlled, Double-Blinded Clinical Trial. Endocr. Pract. 2021;27:1242–1251. doi: 10.1016/j.eprac.2021.09.016.10.1016/j.eprac.2021.09.016PMC851188934653608Hemilä H., Carr A., Chalker E. Vitamin C May Increase the Recovery Rate of Outpatient Cases of SARS-CoV-2 Infection by 70%: Reanalysis of the COVID A to Z Randomized Clinical Trial. Front. Immunol. 2021;12:674681. doi: 10.3389/fimmu.2021.674681.10.3389/fimmu.2021.674681PMC814162134040614Bychinin M.V., Klypa T.V., Mandel I.A., Yusubalieva G.M., Baklaushev V.P., Kolyshkina N.A., Troitsky A.V. Effect of vitamin D3 supplementation on cellular immunity and inflammatory markers in COVID-19 patients admitted to the ICU. Sci. Rep. 2022;12:18604. doi: 10.1038/s41598-022-22045-y.10.1038/s41598-022-22045-yPMC963257036329227Mazidimoradi A., Alemzadeh E., Alemzadeh E., Salehiniya H. The effect of polyunsaturated fatty acids on the severity and mortality of COVID patients: A systematic review. Life Sci. 2022;299:120489. doi: 10.1016/j.lfs.2022.120489.10.1016/j.lfs.2022.120489PMC895885335358595Cuerda C., Sánchez López I., Gil Martínez C., Merino Viveros M., Velasco C., Cevallos Peñafiel V., Maíz Jiménez M., Gonzalo I., González-Sánchez V., Ramos Carrasco A., et al. Impact of COVID-19 in nutritional and functional status of survivors admitted in intensive care units during the first outbreak. Preliminary results of the NUTRICOVID study. Clin. Nutr. 2022;41:2934–2939. doi: 10.1016/j.clnu.2021.11.017.10.1016/j.clnu.2021.11.017PMC860967534893357Rossi A.P., Muollo V., Dalla Valle Z., Urbani S., Pellegrini M., El Ghoch M., Mazzali G. The Role of Obesity, Body Composition, and Nutrition in COVID-19 Pandemia: A Narrative Review. Nutrients. 2022;14:3493. doi: 10.3390/nu14173493.10.3390/nu14173493PMC945822836079751Huang Y., Lu Y., Huang Y.-M., Wang M., Ling W., Sui Y., Zhao H.-L. Obesity in patients with COVID-19: A systematic review and meta-analysis. Metabolism. 2020;113:154378. doi: 10.1016/j.metabol.2020.154378.10.1016/j.metabol.2020.154378PMC752136133002478Besutti G., Pellegrini M., Ottone M., Cantini M., Milic J., Bonelli E., Dolci G., Cassone G., Ligabue G., Spaggiari L., et al. The impact of chest CT body composition parameters on clinical outcomes in COVID-19 patients. PLoS ONE. 2021;16:e0251768. doi: 10.1371/journal.pone.0251768.10.1371/journal.pone.0251768PMC812132433989341Wang P., Li Y., Wang Q. Sarcopenia: An underlying treatment target during the COVID-19 pandemic. Nutrition. 2021;84:111104. doi: 10.1016/j.nut.2020.111104.10.1016/j.nut.2020.111104PMC783332133421827Wierdsma N.J., Kruizenga H.M., Konings L.A., Krebbers D., Jorissen J.R., Joosten M.-H.I., van Aken L.H., Tan F.M., van Bodegraven A.A., Soeters M.R., et al. Poor nutritional status, risk of sarcopenia and nutrition related complaints are prevalent in COVID-19 patients during and after hospital admission. Clin. Nutr. ESPEN. 2021;43:369–376. doi: 10.1016/j.clnesp.2021.03.021.10.1016/j.clnesp.2021.03.021PMC805632834024542Rossi A.P., Gottin L., Donadello K., Schweiger V., Brandimarte P., Zamboni G.A., Florio A., Boetti R., Pavan G., Zamboni M., et al. Intermuscular Adipose Tissue as a Risk Factor for Mortality and Muscle Injury in Critically Ill Patients Affected by COVID-19. Front. Physiol. 2021;12:651167. doi: 10.3389/fphys.2021.651167.10.3389/fphys.2021.651167PMC813454334025446Feng X., Liu Z., He X., Wang X., Yuan C., Huang L., Song R., Wu Y. Risk of Malnutrition in Hospitalized COVID-19 Patients: A Systematic Review and Meta-Analysis. Nutrients. 2022;14:5267. doi: 10.3390/nu14245267.10.3390/nu14245267PMC978080836558436Bellanti F., Lo Buglio A., Quiete S., Vendemiale G. Malnutrition in Hospitalized Old Patients: Screening and Diagnosis, Clinical Outcomes, and Management. Nutrients. 2022;14:910. doi: 10.3390/nu14040910.10.3390/nu14040910PMC888003035215559Cederholm T., Jensen G.L., Correia M.I.T.D., Gonzalez M.C., Fukushima R., Higashiguchi T., Baptista G., Barazzoni R., Blaauw R., Coats A., et al. GLIM criteria for the diagnosis of malnutrition-A consensus report from the global clinical nutrition community. Clin. Nutr. 2019;38:1–9. doi: 10.1016/j.clnu.2018.08.002.10.1016/j.clnu.2018.08.00230181091Nakamura T., Itoh T., Yabe A., Imai S., Nakamura Y., Mizokami Y., Okouchi Y., Ikeshita A., Kominato H. Polypharmacy is associated with malnutrition and activities of daily living disability among daycare facility users: A cross-sectional study. Medicine. 2021;100:e27073. doi: 10.1097/MD.0000000000027073.10.1097/MD.0000000000027073PMC838995434449506Thomas S., Alexander C., Cassady B.A. Nutrition risk prevalence and nutrition care recommendations for hospitalized and critically-ill patients with COVID-19. Clin. Nutr. ESPEN. 2021;44:38–49. doi: 10.1016/j.clnesp.2021.06.002.10.1016/j.clnesp.2021.06.002PMC818487434330494Vong T., Yanek L.R., Wang L., Yu H., Fan C., Zhou E., Oh S.J., Szvarca D., Kim A., Potter J.J., et al. Malnutrition Increases Hospital Length of Stay and Mortality among Adult Inpatients with COVID-19. Nutrients. 2022;14:1310. doi: 10.3390/nu14061310.10.3390/nu14061310PMC894906935334967Mohammadi P., Varpaei H.A., Khafaee Pour Khamseh A., Mohammadi M., Rahimi M., Orandi A. Evaluation of the Relationship between Nutritional Status of COVID-19 Patients Admitted to the ICU and Patients’ Prognosis: A Cohort Study. J. Nutr. Metab. 2022;2022:5016649. doi: 10.1155/2022/5016649.10.1155/2022/5016649PMC929501635865866Grund S., Bauer J.M. Malnutrition and Sarcopenia in COVID-19 Survivors. Clin. Geriatr. Med. 2022;38:559–564. doi: 10.1016/j.cger.2022.04.001.10.1016/j.cger.2022.04.001PMC902103735868673Hinkelmann J.V., de Oliveira N.A., Marcato D.F., Costa A.R.R.O., Ferreira A.M., Tomaz M., Rodrigues T.J., Mendes A.P. Nutritional support protocol for patients with COVID-19. Clin. Nutr. ESPEN. 2022;49:544–550. doi: 10.1016/j.clnesp.2022.03.002.10.1016/j.clnesp.2022.03.002PMC891545235623865James P.T., Ali Z., Armitage A.E., Bonell A., Cerami C., Drakesmith H., Jobe M., Jones K.S., Liew Z., Moore S.E., et al. The Role of Nutrition in COVID-19 Susceptibility and Severity of Disease: A Systematic Review. J. Nutr. 2021;151:1854–1878. doi: 10.1093/jn/nxab059.10.1093/jn/nxab059PMC819460233982105Ojo O., Ojo O.O., Feng Q., Boateng J., Wang X., Brooke J., Adegboye A.R.A. The Effects of Enteral Nutrition in Critically Ill Patients with COVID-19: A Systematic Review and Meta-Analysis. Nutrients. 2022;14:1120. doi: 10.3390/nu14051120.10.3390/nu14051120PMC891227235268095Bodolea C., Nemes A., Avram L., Craciun R., Coman M., Ene-Cocis M., Ciobanu C., Crisan D. Nutritional Risk Assessment Scores Effectively Predict Mortality in Critically Ill Patients with Severe COVID-19. Nutrients. 2022;14:2105. doi: 10.3390/nu14102105.10.3390/nu14102105PMC914414335631246Greene M.W., Roberts A.P., Frugé A.D. Negative Association Between Mediterranean Diet Adherence and COVID-19 Cases and Related Deaths in Spain and 23 OECD Countries: An Ecological Study. Front. Nutr. 2021;8:591964. doi: 10.3389/fnut.2021.591964.10.3389/fnut.2021.591964PMC797301233748170Gupta S., Read S.A., Shackel N.A., Hebbard L., George J., Ahlenstiel G. The Role of Micronutrients in the Infection and Subsequent Response to Hepatitis C Virus. Cells. 2019;8:603. doi: 10.3390/cells8060603.10.3390/cells8060603PMC662705331212984Clemente-Suárez V.J., Ramos-Campo D.J., Mielgo-Ayuso J., Dalamitros A.A., Nikolaidis P.A., Hormeño-Holgado A., Tornero-Aguilera J.F. Nutrition in the Actual COVID-19 Pandemic. A Narrative Review. Nutrients. 2021;13:1924. doi: 10.3390/nu13061924.10.3390/nu13061924PMC822883534205138