This study investigated the effects of cilostazol on motor dysfunction, spinal motor neuron abnormalities, and schwannopathy in rats with diabetes. Diabetes mellitus (DM) was induced in rats via femoral intravenous streptozotocin (STZ) injection (60 mg/kg). After successful DM induction, cilostazol was administered on day 15 via oral gavage (100 mg/kg/day) for 6 weeks until sacrifice. Behavioral assays, including motor function, were performed weekly. The sciatic nerve, L5 spinal cord, and spinal ventral root were collected to evaluate the expression of the glial fibrillary acidic protein (GFAP), myelin protein zero (P0), and choline acetyltransferase (ChAT) by immunofluorescence and Western blotting. DM rats displayed decreased running speeds, running distances, and toe spread but increased foot pressure. In addition, loss of non-myelinating Schwann cells and myelin sheaths was observed in the sciatic nerve and L5 spinal ventral root. Reduced numbers of motor neurons were also found in the L5 spinal ventral horn. Cilostazol administration significantly potentiated running speed and distance; increased hind paw toe spread; and decreased foot pressure. In the sciatic nerve and L5 spinal ventral root, cilostazol treatment significantly improved non-myelinated Schwann cells and increased myelin mass. ChAT expression in motor neurons in the spinal ventral horn was improved, but not significantly. Cilostazol administration may protect sensorimotor function in diabetic rats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11277457 | PMC |
http://dx.doi.org/10.3390/ijms25147847 | DOI Listing |
Neurospine
December 2024
Balgrist University Hospital, Zurich, Switzerland.
This video aims to describe an endoscopic surgical approach for accessing difficult to reach pathology such as disc herniations after previous surgery. The relatively small size of endoscopic instruments facilitates significant freedom of movement inside the spinal canal. The authors have experience with interlaminar approaches for contralateral pathology such as disc herniations, recurrent disc herniations, spinal stenosis, and facet cysts.
View Article and Find Full Text PDFJ Neuroeng Rehabil
January 2025
Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA.
Background: There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages.
View Article and Find Full Text PDFCell Rep
January 2025
Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA. Electronic address:
Cell Mol Neurobiol
January 2025
Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, TS, Italy.
In clinics, physical injuries to the spinal cord cause a temporary motor areflexia below lesion, known as spinal shock. This topic is still underexplored due to the lack of preclinical spinal cord injury (SCI) models that do not use anesthesia, which would affect spinal excitability. Our innovative design considered a custom-made micro impactor that provides localized and calibrated strikes to the ventral surface of the thoracic spinal cord of the entire CNS isolated from neonatal rats.
View Article and Find Full Text PDFJ Clin Neurosci
December 2024
Department of Neurosurgery, University of South Alabama, Mobile, AL, USA. Electronic address:
Background: The transoral transpharyngeal odontoidectomy, followed by occipitocervical fixation, have traditionally been a recognized method for ameliorating ventral compression at the craniovertebral junction (CVJ), despite its associated comorbidities. As an alternative, the endoscopic endonasal odontoid resection is a viable approach for various CVJ abnromalities that preserve the oropharynx and leads to fewer procedure-related complications(1-4). We present our case to detail the technical nuances of the procedure and its advantages over other techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!