Drug-Target Interaction Prediction Based on an Interactive Inference Network.

Int J Mol Sci

College of Mathematics and Computer, Shantou University, Shantou 515063, China.

Published: July 2024

Drug-target interactions underlie the actions of chemical substances in medicine. Moreover, drug repurposing can expand use profiles while reducing costs and development time by exploiting potential multi-functional pharmacological properties based upon additional target interactions. Nonetheless, drug repurposing relies on the accurate identification and validation of drug-target interactions (DTIs). In this study, a novel drug-target interaction prediction model was developed. The model, based on an interactive inference network, contains embedding, encoding, interaction, feature extraction, and output layers. In addition, this study used Morgan and PubChem molecular fingerprints as additional information for drug encoding. The interaction layer in our model simulates the drug-target interaction process, which assists in understanding the interaction by representing the interaction space. Our method achieves high levels of predictive performance, as well as interpretability of drug-target interactions. Additionally, we predicted and validated 22 Alzheimer's disease-related targets, suggesting our model is robust and effective and thus may be beneficial for drug repurposing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11277210PMC
http://dx.doi.org/10.3390/ijms25147753DOI Listing

Publication Analysis

Top Keywords

drug-target interaction
12
drug-target interactions
12
drug repurposing
12
interaction prediction
8
based interactive
8
interactive inference
8
inference network
8
encoding interaction
8
drug-target
6
interaction
6

Similar Publications

Discovery of a heparan sulfate binding domain in monkeypox virus H3 as an anti-poxviral drug target combining AI and MD simulations.

Elife

January 2025

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding.

View Article and Find Full Text PDF

Peptide design to control protein-protein interactions.

Chem Soc Rev

January 2025

School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.

Targeting of protein-protein interactions has become of huge interest in every aspect of medicinal and biological sciences. The control of protein interactions selectively offers the opportunity to control biological processes while limiting off target effects. This interest has massively increased with the development of cryo-EM and protein structure prediction with tools such as RosettaFold and AlphaFold.

View Article and Find Full Text PDF

is a major cause of nosocomial diarrhea. As current antibiotic treatment failures and recurrence of infections are highly frequent, alternative strategies are needed for the treatment of this disease. This study explores the use of bacteriocins, specifically lacticin 3147 and pediocin PA-1, which have reported inhibitory activity against .

View Article and Find Full Text PDF

Small Molecular Oligopeptides Adorned with Tryptophan Residues as Potent Antitumor Agents: Design, Synthesis, Bioactivity Assay, Computational Prediction, and Experimental Validation.

J Chem Inf Model

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.

Tryptophan participates in important life activities and is involved in various metabolic processes. The indole and aromatic binuclear ring structure in tryptophan can engage in diverse interactions, including π-π, π-alkyl, hydrogen bonding, cation-π, and CH-π interactions with other side chains and protein targets. These interactions offer extensive opportunities for drug development.

View Article and Find Full Text PDF

Objective: Colorectal Cancer (CRC) has attracted much attention due to its high mortality and morbidity. Cordycepin, also known as 3'-deoxyadenosine (3'-dA), exhibits many biological functions, including antibacterial, anti-inflammatory, antiviral, anti-tumor, and immunomodulatory effects. It has been proven to show anticancer activity in both laboratory research studies and living organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!