Muscle wasting can be caused by nutrition deficiency and inefficient metabolism of amino acids, including Branched Chain Amino Acids (BCAAs). Branched Chain Amino Acids are a major contributor to the metabolic needs of healthy muscle and account for over a tenth of lean muscle mass. Branched chain alpha-ketoacid dehydrogenase (BCKD) is the rate limiting enzyme of BCAA metabolism. Inhibition of BCKD is achieved through a reversible phosphorylation event by Branched Chain a-ketoacid dehydrogenase kinase (BCKDK). Our study set out to determine the importance of BCKDK in the maintenance of skeletal muscle. We used the Gene Expression Omnibus Database to understand the role of BCKDK in skeletal muscle pathogenesis, including aging, muscular disease, and interrupted muscle metabolism. We found BCKDK expression levels were consistently decreased in pathologic conditions. These results were most consistent when exploring muscular disease followed by aging. Based on our findings, we hypothesize that decreased BCKDK expression alters BCAA catabolism and impacts loss of normal muscle integrity and function. Further research could offer valuable insights into potential therapeutic strategies for addressing muscle-related disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11277350PMC
http://dx.doi.org/10.3390/ijms25147601DOI Listing

Publication Analysis

Top Keywords

branched chain
20
skeletal muscle
12
amino acids
12
dehydrogenase kinase
8
kinase bckdk
8
bckdk skeletal
8
muscle
8
chain amino
8
muscular disease
8
bckdk expression
8

Similar Publications

Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years.

View Article and Find Full Text PDF

Gualou-Xiebai-Banxia (GXB) decoction shows potential for treating myocardial ischemia (MI), although its underlying mechanism is not fully understood. In this study, a multimodal metabolomics approach, combining gas chromatography-mass spectrometry (GC-MS) and H-NMR, was employed to investigate the cardioprotective effects of GXB in a rat model of myocardial ischemia induced by ligation. ELISA assays and HE staining demonstrated that GXB effectively reduced myocardial injury, oxidative stress markers, and myocardial fibrosis.

View Article and Find Full Text PDF

Whey proteins have anti-fatigue activity, but there are few studies that have reported the ameliorative effects of branched-chain amino acid (BCAA) oligopeptides from whey proteins on fatigue in mice. The purposes of this study were to establish a process for the preparation of BCAA oligopeptides from whey protein and to investigate the anti-fatigue activity of BCAA oligopeptides. Whey proteins were hydrolyzed by trypsin and flavourzyme and purified by ethanol precipitation and reversed-phase high performance liquid chromatography (RP-HPLC).

View Article and Find Full Text PDF

Nowadays, nucleic acid derivatives capable of modulating gene expression at the RNA level have gained widespread recognition as promising therapeutic agents. A suitable degree of biological stability of oligonucleotide therapeutics is required for in vivo application; this can be most expeditiously achieved by the chemical modification of the internucleotidic phosphate group, which may also affect their cellular uptake, tissue distribution and pharmacokinetics. Our group has previously developed a strategy for the chemical modification of the phosphate group via the Staudinger reaction on a solid phase of the intermediate dinucleoside phosphite triester and a range of, preferably, electron deficient organic azides such as sulfonyl azides during automated solid-phase DNA synthesis according to the conventional β-cyanoethyl phosphoramidite scheme.

View Article and Find Full Text PDF

Obesity and its related diseases, such as type 2 diabetes (T2DM), cardiovascular disease (CVD), and metabolic fatty liver disease (MAFLD), require new diagnostic markers for earlier detection and intervention. The aim of this study is to demonstrate the potential of metabolomics as a tool for identifying biomarkers associated with obesity and its comorbidities in every age group. The presented systematic review makes an important contribution to the understanding of the potential of metabolomics in identifying biomarkers of obesity and its complications, especially considering the influence of branched-chain amino acids (BCAAs), amino acids (AAs) and adipokines on the development of T2DM, MAFLD, and CVD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!