A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identifying Diagnostic Markers and Constructing Predictive Models for Oxidative Stress in Multiple Sclerosis. | LitMetric

Multiple sclerosis (MS) is a chronic disease characterized by inflammation and neurodegeneration of the central nervous system. Despite the significant role of oxidative stress in the pathogenesis of MS, its precise molecular mechanisms remain unclear. This study utilized microarray datasets from the GEO database to analyze differentially expressed oxidative-stress-related genes (DE-OSRGs), identifying 101 DE-OSRGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicate that these genes are primarily involved in oxidative stress and immune responses. Through protein-protein interaction (PPI) network, LASSO regression, and logistic regression analyses, four genes (, , , and ) were identified as being closely related to MS. A diagnostic prediction model based on logistic regression demonstrated good predictive power, as shown by the nomogram curve index and DAC results. An immune-cell infiltration analysis using CIBERSORT revealed significant correlations between these genes and immune cell subpopulations. Abnormal oxidative stress and upregulated expression of key genes were observed in the blood and brain tissues of EAE mice. A molecular docking analysis suggested strong binding potentials between the proteins of these genes and several drug molecules, including isoquercitrin, decitabine, benztropine, and curcumin. In conclusion, this study identifies and validates potential diagnostic biomarkers for MS, establishes an effective prediction model, and provides new insights for the early diagnosis and personalized treatment of MS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11276709PMC
http://dx.doi.org/10.3390/ijms25147551DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
multiple sclerosis
8
logistic regression
8
prediction model
8
genes
7
identifying diagnostic
4
diagnostic markers
4
markers constructing
4
constructing predictive
4
predictive models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!