Inherited metabolic diseases (IMDs) are a group of heterogeneous genetic disorders resulting in substrate accumulation, energy deficiency, or complex molecular defects due to the failure of specific molecules to act as enzymes, cofactors, transporters, or receptors in specific metabolic pathways. The pathophysiological changes seen in IMDs are sometimes associated with intellectual disability (ID) or neurocognitive decline, necessitating multidisciplinary input. We here describe our experience at one tertiary metabolic centre in the UK. We reviewed the case prevalence and existing service provision in one adult IMD service covering a multi-ethnic population of 10 million in North England. In our cohort of 2268 IMD patients, 1598 patients had general metabolic conditions (70.5%), and 670 had lysosomal storage disease/disorders (LSD)s (29.5%). The overall prevalence of ID and neurocognitive decline was found to be 15.7% ( = 357), with patients with LSDs accounting for 23.5% ( = 84) of affected patients. Given the prevalence of ID in adults with IMDs, access to multidisciplinary input from neuropsychology and neuropsychiatry services is important. Education of healthcare professionals to diagnose IMDs in patients with ID, in addition to neurocognitive and neuropsychiatric presentations, will avoid missed diagnoses of IMD and will have a positive effect on patient outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11276493 | PMC |
http://dx.doi.org/10.3390/genes15070923 | DOI Listing |
J Inherit Metab Dis
January 2025
Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
Liver transplantation (LTx) is increasingly used in Urea Cycle Defects (UCDs) to prevent recurrent hyperammonemia and related neurological irreversible injury. Among UCDs, argininosuccinate lyase deficiency (ASLD) has a more complex phenotype than other UCDs, with long-term neurocognitive deficits. Therefore, the role of LTx in ASLD is still debated.
View Article and Find Full Text PDFJAGN1 (Jagunal-homolog1) is a ER-resident transmembrane protein which is part of the early secretory pathway and granulocyte colony-stimulating factor receptor mediated signaling. Autosomal recessively inherited variants in the JAGN1 gene lead to congenital neutropenia, early-onset bacterial infections, aphthosis and skin abscesses due to aberrant differentiation and maturation of neutrophils. In addition, bone metabolism disorders and a syndromic phenotype, including facial features, short stature and neurodevelopmental delay, have been reported in affected patients.
View Article and Find Full Text PDFHepatol Commun
January 2025
Research and Development, Sanofi, Cambridge, Massachusetts, USA.
Background: Acid sphingomyelinase deficiency (ASMD) and Gaucher disease type 1 (GD1) are rare inherited sphingolipid disorders with multisystemic manifestations, including liver disease and dyslipidemia. Despite effective treatments, insufficient disease awareness frequently results in diagnostic delays during which irreversible complications occur. We delineated the shared and distinctive features of hepatic, splenic, and lipoprotein phenotypes in ASMD and GD1.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Pediatric Endocrinologist, Metabolic Disorders Research Center, Molecular-cellular Endocrinology & Metabolism Research Institute, Tehran University of medical Sciences, Tehran, Iran.
Maple Syrup Urine Disease (MSUD) disease is a defect in the function of the Branched-chain 2-ketoacid dehydrogenase complex (BCKDH). It is caused by pathogenic biallelic variants in BCKDHA, BCKA decarboxylase, or dihydrolipoamide dehydrogenase. The brain is the major organ involved in MSUD.
View Article and Find Full Text PDFSci Transl Med
January 2025
Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.
Familial platelet disorder (FPD) is associated with germline mutations, establishing a preleukemic state and increasing the risk of developing leukemia. Currently, there are no intervention strategies to prevent leukemia progression. Single-cell RNA sequencing ( = 10) combined with functional analysis of samples from patients with -FPD ( > 75) revealed that FPD hematopoietic stem and progenitor cells (HSPCs) displayed increased myeloid differentiation and suppressed megakaryopoiesis because of increased activation of prosurvival and inflammatory pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!