The Role of the RNA Helicase DDX3X in Medulloblastoma Progression.

Biomolecules

Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.

Published: July 2024

Medulloblastoma is the most common pediatric brain cancer, with about five cases per million in the pediatric population. Current treatment strategies have a 5-year survival rate of 70% or more but frequently lead to long-term neurocognitive defects, and recurrence is relatively high. Genomic sequencing of medulloblastoma patients has shown that , which encodes an RNA helicase involved in the process of translation initiation, is among the most commonly mutated genes in medulloblastoma. The identified mutations are 42 single-point amino acid substitutions and are mostly not complete loss-of-function mutations. The pathological mechanism of mutations in the causation of medulloblastoma is poorly understood, but several studies have examined their role in promoting cancer progression. This review first discusses the known roles of DDX3X and its yeast ortholog Ded1 in translation initiation, cellular stress responses, viral replication, innate immunity, inflammatory programmed cell death, Wnt signaling, and brain development. It then examines our current understanding of the oncogenic mechanism of the mutations in medulloblastoma, including the effect of these mutations on growth, biochemical functions, translation, and stress responses. Further research on DDX3X's mechanism and targets is required to therapeutically target DDX3X and/or its downstream effects in medulloblastoma progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11274571PMC
http://dx.doi.org/10.3390/biom14070803DOI Listing

Publication Analysis

Top Keywords

rna helicase
8
medulloblastoma progression
8
translation initiation
8
mechanism mutations
8
stress responses
8
medulloblastoma
7
mutations
5
role rna
4
helicase ddx3x
4
ddx3x medulloblastoma
4

Similar Publications

RNA G-quadruplexes (rG4s) are non-canonical secondary nucleic acid structures found in the transcriptome. They play crucial roles in gene regulation by interacting with G4-binding proteins (G4BPs) in cells. rG4-G4BP complexes have been associated with human diseases, making them important targets for drug development.

View Article and Find Full Text PDF

EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes.

Exp Hematol Oncol

January 2025

Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are key regulators during gastric cancer (GC) development and may be viable treatment targets. In the present study, we showed that the expression of the long intergenic noncoding RNA 01016 (LINC01016) is significantly higher in GC tissues with lymph node metastasis (LNM) than those without LNM. LINC01016 overexpression predicts a poorer relapse-free survival (RFS) and overall survival (OS).

View Article and Find Full Text PDF

Cell fate decisions during cortical development sculpt the identity of long-range connections that subserve complex behaviors. These decisions are largely dictated by mutually exclusive transcription factors, including CTIP2/Bcl11b for subcerebral projection neurons and BRN1/Pou3f3 for intra-telencephalic projection neurons. We have recently reported that the balance of cortical CTIP2-expressing neurons is altered in a mouse model of DDX3X syndrome, a female-biased neurodevelopmental disorder associated with intellectual disability, autism spectrum disorder, and significant motor challenges.

View Article and Find Full Text PDF

A novel ADP-directed chaperone function facilitates the ATP-driven motor activity of SARS-CoV helicase.

Nucleic Acids Res

January 2025

Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea.

Helicase is a nucleic acid motor that catalyses the unwinding of double-stranded (ds) RNA and DNA via ATP hydrolysis. Helicases can act either as a nucleic acid motor that unwinds its ds substrates or as a chaperone that alters the stability of its substrates, but the two activities have not yet been reported to act simultaneously. Here, we used single-molecule techniques to unravel the synergistic coordination of helicase and chaperone activities, and found that the severe acute respiratory syndrome coronavirus helicase (nsp13) is capable of two modes of action: (i) binding of nsp13 in tandem with the fork junction of the substrate mechanically unwinds the substrate by an ATP-driven synchronous power stroke; and (ii) free nsp13, which is not bound to the substrate but complexed with ADP in solution, destabilizes the substrate through collisions between transient binding and unbinding events with unprecedented melting capability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!