AI Article Synopsis

  • Dysregulation of lipid metabolism can cause dyslipidemia and obesity, which contribute significantly to cardiovascular disease, prompting this study to explore six plant extracts (ACE-, RSE-, CHE-, CE-, AGE-, CGE-) as potential therapies for these conditions.
  • The study found that RSE contained the highest levels of polyphenols and phenolcarboxylic acids, while CGE exhibited significant concentrations of flavones; both rosemary and hawthorn extracts showed notable antioxidant properties.
  • Using computational methods, the research suggested that rosmarinic acid and chlorogenic acid could effectively interact with the active site of carbonic anhydrase 5A, indicating their potential as anti-obesity agents, warranting further experimental validation in vivo.

Article Abstract

Lipid metabolism dysregulation can lead to dyslipidemia and obesity, which are major causes of cardiovascular disease and associated mortality worldwide. The purpose of the study was to obtain and characterize six plant extracts (ACE-; RSE-; CHE-; CE-; AGE-; CGE-) as promising adjuvant therapies for the prevention and treatment of dyslipidemia and its related metabolic diseases. Phytochemical screening revealed that RSE was the richest extract in total polyphenols (39.62 ± 13.16 g tannic acid/100 g dry extract) and phenolcarboxylic acids (22.05 ± 1.31 g chlorogenic acid/100 g dry extract). Moreover, the spectrophotometric chemical profile highlighted a significant concentration of flavones for CGE (5.32 ± 0.26 g rutoside/100 g dry extract), in contrast to the other extracts. UHPLC-MS quantification detected considerable amounts of phenolic constituents, especially chlorogenic acid in CGE (187.435 ± 1.96 mg/g extract) and rosmarinic acid in RSE (317.100 ± 2.70 mg/g extract). Rosemary and hawthorn extracts showed significantly stronger free radical scavenging activity compared to the other plant extracts ( < 0.05). Pearson correlation analysis and the heatmap correlation matrix indicated significant correlations between phytochemical contents and in vitro antioxidant activities. Computational studies were performed to investigate the potential anti-obesity mechanism of the studied extracts using target prediction, homology modeling, molecular docking, and molecular dynamics approaches. Our study revealed that rosmarinic acid (RA) and chlorogenic acid (CGA) can form stable complexes with the active site of carbonic anhydrase 5A by either interacting with the zinc-bound catalytic water molecule or by directly binding Zn. Further studies are warranted to experimentally validate the predicted CA5A inhibitory activities of RA and CGA and to investigate the hypolipidemic and antioxidant activities of the proposed plant extracts in animal models of dyslipidemia and obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11274650PMC
http://dx.doi.org/10.3390/biomedicines12071431DOI Listing

Publication Analysis

Top Keywords

plant extracts
16
dyslipidemia obesity
12
dry extract
12
acid/100 dry
8
chlorogenic acid
8
mg/g extract
8
rosmarinic acid
8
antioxidant activities
8
extracts
7
extract
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!