Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Brain tumor classification is essential for clinical diagnosis and treatment planning. Deep learning models have shown great promise in this task, but they are often challenged by the complex and diverse nature of brain tumors. To address this challenge, we propose a novel deep residual and region-based convolutional neural network (CNN) architecture, called Res-BRNet, for brain tumor classification using magnetic resonance imaging (MRI) scans. Res-BRNet employs a systematic combination of regional and boundary-based operations within modified spatial and residual blocks. The spatial blocks extract homogeneity, heterogeneity, and boundary-related features of brain tumors, while the residual blocks significantly capture local and global texture variations. We evaluated the performance of Res-BRNet on a challenging dataset collected from Kaggle repositories, Br35H, and figshare, containing various tumor categories, including meningioma, glioma, pituitary, and healthy images. Res-BRNet outperformed standard CNN models, achieving excellent accuracy (98.22%), sensitivity (0.9811), F1-score (0.9841), and precision (0.9822). Our results suggest that Res-BRNet is a promising tool for brain tumor classification, with the potential to improve the accuracy and efficiency of clinical diagnosis and treatment planning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11274019 | PMC |
http://dx.doi.org/10.3390/biomedicines12071395 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!