Hearing loss is a prevalent condition affecting millions of people worldwide. Hearing loss has been linked to oxidative stress as a major factor in its onset and progression. The goal of this thorough analysis is to investigate the connection between oxidative stress and hearing loss, with an emphasis on the underlying mechanisms and possible treatments. The review addressed the many forms of hearing loss, the role of reactive oxygen species (ROS) in causing damage to the cochlea, and the auditory system's antioxidant defensive mechanisms. The review also goes over the available data that support the use of antioxidants and other methods to lessen hearing loss brought on by oxidative stress. We found that oxidative stress is implicated in multiple types of hearing loss, including age-related, noise-induced, and ototoxic hearing impairment. The cochlea's unique anatomical and physiological characteristics, such as high metabolic activity and limited blood supply, make it particularly susceptible to oxidative damage. Antioxidant therapies have shown promising results in both animal models and clinical studies for preventing and mitigating hearing loss. Emerging therapeutic approaches, including targeted drug delivery systems and gene therapy, offer new possibilities for addressing oxidative stress in the auditory system. The significance of this review lies in its comprehensive analysis of the intricate relationship between oxidative stress and hearing loss. By synthesizing current knowledge and identifying gaps in understanding, this review provides valuable insights for both researchers and clinicians. It highlights the potential of antioxidant-based interventions and emphasizes the need for further research into personalized treatment strategies. Our findings on oxidative stress mechanisms may also affect clinical practice and future research directions. This review serves as a foundation for developing novel therapeutic approaches and may inform evidence-based strategies for the prevention and treatment of hearing loss, ultimately contributing to improved quality of life for millions affected by this condition worldwide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11274311 | PMC |
http://dx.doi.org/10.3390/antiox13070842 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!