The goal of stroke rehabilitation is to establish a robust protocol for patients to live independently in community. Firstly, we examined the impact of 3 hybridized transcranial direct current stimulation (tDCS)-mirror therapy interventions on activities of daily life (ADL) in stroke patients. Secondly, we explored the underlying therapeutic mechanisms with theory-driven electroencephalography (EEG) indexes in the alpha band. This was achieved by identifying the unique contributions of alpha power in motor production to ADL in relation to the premotor cortex (PMC), primary cortex (M1), and Sham tDCS with mirror therapy. The results showed that, although post-intervention ADL improvement was comparable among the three tDCS groups, one of the EEG indexes differentiated the interventions. Neural-behavioral correlation analyses revealed that different types of ADL improvements consistently corresponded with alpha power in the temporal lobe exclusively in the PMC tDCS group (all s > 0.39). By contrast, alterations in alpha power in the central-frontal region were found to vary, with ADL primarily in the M1 tDCS group ( = -0.6 or 0.7), with the benefit depending on the complexity of the ADL. In conclusion, this research suggested two potential therapeutic mechanisms and demonstrated the additive benefits of introducing theory-driven neural indexes in explaining ADL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11273914PMC
http://dx.doi.org/10.3390/bioengineering11070717DOI Listing

Publication Analysis

Top Keywords

alpha power
12
transcranial direct
8
direct current
8
current stimulation
8
mirror therapy
8
activities daily
8
daily life
8
therapeutic mechanisms
8
eeg indexes
8
tdcs group
8

Similar Publications

Background: Proso millet bran protein (PMBP), derived from agricultural by-products, possesses high nutritional value, despite its challenging extraction process. The present study proposes an extraction method for PMBP using ultrasound-assisted cellulase technology (UAE), and optimizes the process parameters. Non-waxy (N-PMBP) and waxy (W-PMBP) PMBPs, extracted through alkaline solubilization and acid precipitation (conventional treatment, CT), served as control groups to assess the impact of UAE on the structure and functionality of PMBP, as well as the distinctions between N-PMBPs and W-PMBPs.

View Article and Find Full Text PDF

Building electrode/electrolyte interphases in aqueous zinc batteries via self-polymerization of electrolyte additives.

Natl Sci Rev

January 2025

State Key Laboratory of Advanced Chemical Power Sources, Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.

Aqueous zinc batteries offer promising prospects for large-scale energy storage, yet their application is limited by undesired side reactions at the electrode/electrolyte interface. Here, we report a universal approach for the building of an electrode/electrolyte interphase (EEI) layer on both the cathode and the anode through the self-polymerization of electrolyte additives. In an exemplified Zn||VO·nHO cell, we reveal that the glutamate additive undergoes radical-initiated electro-polymerization on the cathode and polycondensation on the anode, yielding polyglutamic acid-dominated EEI layers on both electrodes.

View Article and Find Full Text PDF

Gene networks encapsulate biological knowledge, often linked to polygenic diseases. While model system experiments generate many plausible gene networks, validating their role in human phenotypes requires evidence from human genetics. Rare variants provide the most straightforward path for such validation.

View Article and Find Full Text PDF

Background: Using an analogue-based drug design approach, a number of novel 2-substituted-1,3-thiazolone derivatives (3-10) have been produced and given permission to proceed for their anti-inflammatory properties. In the present paper, the new thiazole derivatives were designed, synthesized, and tested for their alpha-glucosidase, alpha-amylase, and COX-inhibitory activities. Approving the anti-diabetic activity.

View Article and Find Full Text PDF

Alpha and Theta Oscillations Associated With Behavioral Phenotypes of Pain-Attention Interaction.

Brain Behav

January 2025

Division of Brain, Imaging and Behavior, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.

Purpose: Pain is inherently salient and so draws our attention in addition to impacting performance on attention-demanding tasks. Individual variability in pain-attention interactions can be assessed by two kinds of behavioral phenotypes that quantify how individuals prioritize pain versus attentional needs. The intrinsic attention to pain (IAP) measure quantifies the degree to which a person attends to pain (high-IAP) or mind-wanders away from pain (low-IAP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!