In recent years, the interest in transcranial magnetic stimulation (TMS) has surged, necessitating deeper understanding, development, and use of low-frequency (LF) numerical dosimetry for TMS studies. While various ad hoc dosimetric models exist, commercial software tools like SimNIBS v4.0 and Sim4Life v7.2.4 are preferred for their user-friendliness and versatility. SimNIBS utilizes unstructured tetrahedral mesh models, while Sim4Life employs voxel-based models on a structured grid, both evaluating induced electric fields using the finite element method (FEM) with different numerical solvers. Past studies primarily focused on uniform exposures and voxelized models, lacking realism. Our study compares these LF solvers across simplified and realistic anatomical models to assess their accuracy in evaluating induced electric fields. We examined three scenarios: a single-shell sphere, a sphere with an orthogonal slab, and a MRI-derived head model. The comparison revealed small discrepancies in induced electric fields, mainly in regions of low field intensity. Overall, the differences were contained (below 2% for spherical models and below 12% for the head model), showcasing the potential of computational tools in advancing exposure assessment required for TMS protocols in different bio-medical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11273852 | PMC |
http://dx.doi.org/10.3390/bioengineering11070712 | DOI Listing |
Alzheimers Dement
December 2024
Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife, Boston, MA, USA.
Background: Alzheimer's disease (AD) affects over 55 million people worldwide and is characterized by abnormal deposition of amyloid-β and tau in the brain causing neuronal damage and disrupting transmission within brain circuits. Episodic memory loss, executive deficits, and depression are common symptoms arising from altered function in spatially distinct brain circuits that greatly contribute to disability. Transcranial electrical stimulation (tES) can target these circuits and has shown promise to relieve specific symptoms.
View Article and Find Full Text PDFDiscov Med (Cham)
January 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, ON Canada.
Background: Microvascular dysfunction (MVD) is a recognized sign of disease in heart failure progression. Intact blood vessels exhibit abnormal vasoreactivity in early stage, subsequently deteriorating to rarefaction and reduced perfusion. In managing heart failure with preserved ejection fraction (HFpEF), earlier diagnosis is key to improving management.
View Article and Find Full Text PDFBiomed Eng Lett
January 2025
Power Electronics Research Centre, School of Engineering, University of Galway, Galway, Ireland.
Purpose: Pulsed electrical field (PEF) ablation is an energy-based technique used to treat a range of cancers by irreversible electroporation (IRE). Our objective was to use computational and plant-based models to characterize the electric field distribution and ablation zones induced with a commercial 8-needle array-based applicator intended for treatment of skin cancer when high-frequency IRE (H-FIRE) pulses are applied. Electric field characterisation of this device was not previously assessed.
View Article and Find Full Text PDFJ Clin Periodontol
January 2025
School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC.
Aim: Neurodegenerative diseases are characterized by early increased beta-amyloid (Aβ) and decreased cerebrovascular reactivity. We investigated Aβ in gingiva, serum or hippocampus and neurovascular reactivity in basilar artery (BA) of periodontitis rats, to test the impact of Aβ on BA vasoreactivity ex vivo.
Materials And Methods: Periodontitis was induced in 32 rats using silk-ligation.
Psychophysiology
January 2025
Biological Psychology Lab, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
Transcutaneous vagus nerve stimulation (tVNS) offers a non-invasive method to enhance noradrenergic neurotransmission in the human brain, thereby increasing cognitive control. Here, we investigate if changes in cognitive control induced by tVNS are mediated through locus coeruleus-induced modifications of neural activity in the anterior cingulate cortex. Young healthy participants engaged in a simple cognitive control task focusing on response inhibition and a more complex task that involved both response inhibition and working memory, inside a magnetic resonance imaging scanner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!