This study evaluates the reproducibility of machine learning models that integrate radiomics and deep features (features extracted from a 3D autoencoder neural network) to classify various brain hemorrhages effectively. Using a dataset of 720 patients, we extracted 215 radiomics features (RFs) and 15,680 deep features (DFs) from CT brain images. With rigorous screening based on Intraclass Correlation Coefficient thresholds (>0.75), we identified 135 RFs and 1054 DFs for analysis. Feature selection techniques such as Boruta, Recursive Feature Elimination (RFE), XGBoost, and ExtraTreesClassifier were utilized alongside 11 classifiers, including AdaBoost, CatBoost, Decision Trees, LightGBM, Logistic Regression, Naive Bayes, Neural Networks, Random Forest, Support Vector Machines (SVM), and k-Nearest Neighbors (k-NN). Evaluation metrics included Area Under the Curve (AUC), Accuracy (ACC), Sensitivity (SEN), and F1-score. The model evaluation involved hyperparameter optimization, a 70:30 train-test split, and bootstrapping, further validated with the Wilcoxon signed-rank test and q-values. Notably, DFs showed higher accuracy. In the case of RFs, the Boruta + SVM combination emerged as the optimal model for AUC, ACC, and SEN, while XGBoost + Random Forest excelled in F1-score. Specifically, RFs achieved AUC, ACC, SEN, and F1-scores of 0.89, 0.85, 0.82, and 0.80, respectively. Among DFs, the ExtraTreesClassifier + Naive Bayes combination demonstrated remarkable performance, attaining an AUC of 0.96, ACC of 0.93, SEN of 0.92, and an F1-score of 0.92. Distinguished models in the RF category included SVM with Boruta, Logistic Regression with XGBoost, SVM with ExtraTreesClassifier, CatBoost with XGBoost, and Random Forest with XGBoost, each yielding significant q-values of 42. In the DFs realm, ExtraTreesClassifier + Naive Bayes, ExtraTreesClassifier + Random Forest, and Boruta + k-NN exhibited robustness, with 43, 43, and 41 significant q-values, respectively. This investigation underscores the potential of synergizing DFs with machine learning models to serve as valuable screening tools, thereby enhancing the interpretation of head CT scans for patients with brain hemorrhages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11273742PMC
http://dx.doi.org/10.3390/bioengineering11070643DOI Listing

Publication Analysis

Top Keywords

random forest
16
deep features
12
brain hemorrhages
12
naive bayes
12
radiomics deep
8
autoencoder neural
8
neural network
8
machine learning
8
learning models
8
logistic regression
8

Similar Publications

Ecosystem functioning and management are primarily concerned with addressing climate change and biodiversity loss, which are closely linked to carbon stock and species diversity. This research aimed to quantify forest understory (shrub and herb) diversity, tree biomass and carbon sequestration in the Binsar Wildlife Sanctuary. Using random sampling methods, data were gathered from six distinct forest communities.

View Article and Find Full Text PDF

The aim of this study was to examine the adherence, changes in weight, and, waist circumference associated with the daily consumption of a culturally preferred food, namely an avocado, among Hispanic/Latina females in the Habitual Diet and Avocado Trial (HAT). HAT was a multisite, randomized controlled trial conducted between 2018 and 2020. Participants in the Avocado-Supplemented Diet Group were provided with and instructed to consume one avocado/day (~2.

View Article and Find Full Text PDF

Background/objectives: With the improvement of living standards, alcoholic liver disease caused by long-term drinking has been a common multiple disease. Probiotic interventions may help mitigate liver damage caused by alcohol intake, but the mechanisms need more investigation.

Methods: This study involved 70 long-term alcohol drinkers (18-65 years old, alcohol consumption ≥20 g/day, lasting for more than one year) who were randomly assigned to either the BC99 group or the placebo group.

View Article and Find Full Text PDF

A Simple Machine Learning-Based Quantitative Structure-Activity Relationship Model for Predicting pIC Inhibition Values of FLT3 Tyrosine Kinase.

Pharmaceuticals (Basel)

January 2025

Centro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile.

Acute myeloid leukemia (AML) presents significant therapeutic challenges, particularly in cases driven by mutations in the FLT3 tyrosine kinase. This study aimed to develop a robust and user-friendly machine learning-based quantitative structure-activity relationship (QSAR) model to predict the inhibitory potency (pIC values) of FLT3 inhibitors, addressing the limitations of previous models in dataset size, diversity, and predictive accuracy. Using a dataset which was 14 times larger than those employed in prior studies (1350 compounds with 1269 molecular descriptors), we trained a random forest regressor, chosen due to its superior predictive performance and resistance to overfitting.

View Article and Find Full Text PDF

Depression Recognition Using Daily Wearable-Derived Physiological Data.

Sensors (Basel)

January 2025

Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing 100084, China.

The objective identification of depression using physiological data has emerged as a significant research focus within the field of psychiatry. The advancement of wearable physiological measurement devices has opened new avenues for the identification of individuals with depression in everyday-life contexts. Compared to other objective measurement methods, wearables offer the potential for continuous, unobtrusive monitoring, which can capture subtle physiological changes indicative of depressive states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!