: Diagnosing lung diseases accurately is crucial for proper treatment. Convolutional neural networks (CNNs) have advanced medical image processing, but challenges remain in their accurate explainability and reliability. This study combines U-Net with attention and Vision Transformers (ViTs) to enhance lung disease segmentation and classification. We hypothesize that Attention U-Net will enhance segmentation accuracy and that ViTs will improve classification performance. The explainability methodologies will shed light on model decision-making processes, aiding in clinical acceptance. : A comparative approach was used to evaluate deep learning models for segmenting and classifying lung illnesses using chest X-rays. The Attention U-Net model is used for segmentation, and architectures consisting of four CNNs and four ViTs were investigated for classification. Methods like Gradient-weighted Class Activation Mapping plus plus (Grad-CAM++) and Layer-wise Relevance Propagation (LRP) provide explainability by identifying crucial areas influencing model decisions. : The results support the conclusion that ViTs are outstanding in identifying lung disorders. Attention U-Net obtained a Dice Coefficient of 98.54% and a Jaccard Index of 97.12%. ViTs outperformed CNNs in classification tasks by 9.26%, reaching an accuracy of 98.52% with MobileViT. An 8.3% increase in accuracy was seen while moving from raw data classification to segmented image classification. Techniques like Grad-CAM++ and LRP provided insights into the decision-making processes of the models. : This study highlights the benefits of integrating Attention U-Net and ViTs for analyzing lung diseases, demonstrating their importance in clinical settings. Emphasizing explainability clarifies deep learning processes, enhancing confidence in AI solutions and perhaps enhancing clinical acceptance for improved healthcare results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275579 | PMC |
http://dx.doi.org/10.3390/diagnostics14141534 | DOI Listing |
Sci Rep
January 2025
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
This paper introduces a novel method for spleen segmentation in ultrasound images, using a two-phase training approach. In the first phase, the SegFormerB0 network is trained to provide an initial segmentation. In the second phase, the network is further refined using the Pix2Pix structure, which enhances attention to details and corrects any erroneous or additional segments in the output.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Information Engineering, China University of Geosciences, Beijing 100083, China.
Extracting fragmented cropland is essential for effective cropland management and sustainable agricultural development. However, extracting fragmented cropland presents significant challenges due to its irregular and blurred boundaries, as well as the diversity in crop types and distribution. Deep learning methods are widely used for land cover classification.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Master's Program in Information and Computer Science, Doshisha University, Kyoto 610-0394, Japan.
The semantic segmentation of bone structures demands pixel-level classification accuracy to create reliable bone models for diagnosis. While Convolutional Neural Networks (CNNs) are commonly used for segmentation, they often struggle with complex shapes due to their focus on texture features and limited ability to incorporate positional information. As orthopedic surgery increasingly requires precise automatic diagnosis, we explored SegFormer, an enhanced Vision Transformer model that better handles spatial awareness in segmentation tasks.
View Article and Find Full Text PDFComput Biol Med
January 2025
Department of EECE, Military Institute of Science and Technology (MIST), Mirpur Cantonment, Dhaka, 1216, Bangladesh. Electronic address:
The detection and excision of colorectal polyps, precursors to colorectal cancer (CRC), can improve survival rates by up to 90%. Automated polyp segmentation in colonoscopy images expedites diagnosis and aids in the precise identification of adenomatous polyps, thus mitigating the burden of manual image analysis. This study introduces FocusUNet, an innovative bi-level nested U-structure integrated with a dual-attention mechanism.
View Article and Find Full Text PDFPLoS One
January 2025
Medical Image Processing Research Group (MIPRG), Dept. of Elect. & Comp. Engineering, COMSATS University Islamabad, Islamabad, Pakistan.
Recovering diagnostic-quality cardiac MR images from highly under-sampled data is a current research focus, particularly in addressing cardiac and respiratory motion. Techniques such as Compressed Sensing (CS) and Parallel Imaging (pMRI) have been proposed to accelerate MRI data acquisition and improve image quality. However, these methods have limitations in high spatial-resolution applications, often resulting in blurring or residual artifacts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!