This project employs artificial intelligence, including machine learning and deep learning, to assess COVID-19 readmission risk in Malaysia. It offers tools to mitigate healthcare resource strain and enhance patient outcomes. This study outlines a methodology for classifying COVID-19 readmissions. It starts with dataset description and pre-processing, while the data balancing was computed through Random Oversampling, Borderline SMOTE, and Adaptive Synthetic Sampling. Nine machine learning and ten deep learning techniques are applied, with five-fold cross-validation for evaluation. Optuna is used for hyperparameter selection, while the consistency in training hyperparameters is maintained. Evaluation metrics encompass accuracy, AUC, and training/inference times. Results were based on stratified five-fold cross-validation and different data-balancing methods. Notably, CatBoost consistently excelled in accuracy and AUC across all tables. Using ROS, CatBoost achieved the highest accuracy (0.9882 ± 0.0020) with an AUC of 1.0000 ± 0.0000. CatBoost maintained its superiority in BSMOTE and ADASYN as well. Deep learning approaches performed well, with SAINT leading in ROS and TabNet leading in BSMOTE and ADASYN. Decision Tree ensembles like Random Forest and XGBoost consistently showed strong performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275856PMC
http://dx.doi.org/10.3390/diagnostics14141511DOI Listing

Publication Analysis

Top Keywords

deep learning
16
machine learning
12
covid-19 readmissions
8
learning deep
8
learning approaches
8
five-fold cross-validation
8
accuracy auc
8
bsmote adasyn
8
learning
7
predictive modeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!