The melanoma-associated antigen (MAGE) family found in eukaryotes plays a crucial role in cell proliferation and differentiation, spermatogenesis, neural development, etc. This study explored the validation and evolution of MAGE genes in eukaryotic genomes and their distribution and expression patterns in pigs. In total, 249 MAGE genes were found on 13 eukaryotic species. In total, 33, 25, and 18 genes were located on human, mouse, and pig genomes, respectively. We found eight, four, and three tandemly duplicated gene clusters on the human, mouse, and pig genomes, respectively. The majority of MAGE genes in mammals are located on the X chromosome. According to the phylogenetic analysis, the MAGE family genes were classified into 11 subfamilies. The NDN gene in zebrafish () was the root of this evolutionary tree. In total, 10 and 11 MAGE genes on human and mouse genomes, respectively, exhibited a collinearity relationship with the MAGE genes on pig genomes. Taking the MAGE family genes in pigs, the MAGE subfamilies had similar gene structures, protein motifs, and biochemical attributes. Using the RNA-seq data of Duroc pigs and Rongchang pigs, we detected that the expression of type I MAGE genes was higher in reproductive tissues, but type II MAGE genes were predominantly expressed in the brain tissue. These findings are a valuable resource for gaining insight into the evolution and expression of the MAGE family genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11274276PMC
http://dx.doi.org/10.3390/ani14142095DOI Listing

Publication Analysis

Top Keywords

mage genes
28
mage family
16
mage
13
human mouse
12
pig genomes
12
family genes
12
genes
11
genes eukaryotic
8
mouse pig
8
type mage
8

Similar Publications

Coselection of BAC for Escherichia coli chromosomal DNA multiplex automated genome engineering.

Biotechnol Lett

December 2024

Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China.

Recombineering (recombination-mediated genetic engineering) is a powerful strategy for bacterial genomic DNA and plasmid DNA modifications. CoS-MAGE improved over MAGE (multiplex automated genome engineering) by co-electroporation of an antibiotic resistance repair oligo along with the oligos for modification of the Escherichia coli chromosome. After several cycles of recombineering, the sub-population of mutants were selected among the antibiotic resistant colonies.

View Article and Find Full Text PDF

Evaluation of MAGE-A4 expression in breast cancer and its impact on prognosis.

Cancer Sci

December 2024

Department of Personalized Cancer Immunotherapy/Center for Comprehensive Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan.

Melanoma-associated antigen (MAGE)-A4, a cancer testis antigen, presents a promising target for chimeric antigen receptor T cell therapy in refractory solid tumors, including breast cancer (BC). However, the lack of highly specific Abs against MAGE-A4 is a major challenge for the development of MAGE-A4-targeted immunotherapies. This study aimed to validate the specificity of a novel MAGE-A4 Ab (E701U) and examine MAGE-A4 expression in clinical BC samples.

View Article and Find Full Text PDF

Background/objectives: Colon cancer (CC) in Saudi Arabia is associated with a high death rate and is commonly identified at a more progressive stage. Therefore, it is critical to identify and characterize potential novel cancer-specific biomarkers to enhance early CC diagnosis. The goal was to assess their potential use as cancer biomarkers for the early detection and improvement of CC treatment.

View Article and Find Full Text PDF

Melanoma antigen genes (MAGE); novel functional targets in multiple myeloma.

Semin Hematol

October 2024

Multiple Myeloma Center of Excellence, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York NY USA; The Multiple Myeloma Research Foundation, Norwalk, CT. Electronic address:

Melanoma Antigen Genes (MAGE) are expressed in a broad range of cancers, including multiple myeloma. MAGE have been under investigation for more than 3 decades as targets for immune therapy, while in parallel, interrogation of their functions has revealed activities that may be particularly critical in multiple myeloma. MAGE-C1 is expressed in about 75% of newly diagnosed cases and this is maintained through the natural history of the disease.

View Article and Find Full Text PDF

Background: The development of chimeric antigen receptor (CAR)-T cell therapies for solid tumors has attracted considerable attention, yet their clinical efficacy remains limited. Therefore, various efforts have been made to improve the efficacy of CAR-T cell therapy. As one promising strategy, incorporating the T-cell receptor (TCR) machinery into CAR structures has been reported to improve the efficacy of CAR-T cells in studies using conventional CARs targeting such as EGFR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!