Mitral cells (MCs) in the main olfactory bulb relay odor information to higher-order olfactory centers by encoding the information in the form of action potentials. The firing patterns of these cells are influenced by both their intrinsic properties and their synaptic connections within the neural network. However, reports on MC firing patterns have been inconsistent, and the mechanisms underlying these patterns remain unclear. Using whole-cell patch-clamp recordings in mouse brain slices, we discovered that MCs exhibit two types of integrative behavior: regular/rhythmic firing and bursts of action potentials. These firing patterns could be transformed both spontaneously and chemically. MCs with regular firing maintained their pattern even in the presence of blockers of fast synaptic transmission, indicating this was an intrinsic property. However, regular firing could be transformed into bursting by applying GABA receptor antagonists to block inhibitory synaptic transmission. Burst firing could be reverted to regular firing by blocking ionotropic glutamate receptors, rather than applying a GABA receptor agonist, indicating that ionotropic glutamatergic transmission mediated this transformation. Further experiments on long-lasting currents (LLCs), which generated burst firing, also supported this mechanism. In addition, cytoplasmic Ca in MCs was involved in the transformation of firing patterns mediated by glutamatergic transmission. Metabotropic glutamate receptors also played a role in LLCs in MCs. These pieces of evidence indicate that odor information can be encoded on a mitral cell (MC) platform, where it can be relayed to higher-order olfactory centers through intrinsic and dendrodendritic mechanisms in MCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275187 | PMC |
http://dx.doi.org/10.3390/brainsci14070678 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!