LncRNA LOC730101 Promotes Darolutamide Resistance in Prostate Cancer by Suppressing miR-1-3p.

Cancers (Basel)

Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.

Published: July 2024

Antiandrogen is part of the standard-of-care treatment option for metastatic prostate cancer. However, prostate cancers frequently relapse, and the underlying resistance mechanism remains incompletely understood. This study seeks to investigate whether long non-coding RNAs (lncRNAs) contribute to the resistance against the latest antiandrogen drug, darolutamide. Our RNA sequencing analysis revealed significant overexpression of LOC730101 in darolutamide-resistant cancer cells compared to the parental cells. Elevated LOC730101 levels were also observed in clinical samples of metastatic castration-resistant prostate cancer (CRPC) compared to primary prostate cancer samples. Silencing LOC730101 with siRNA significantly impaired the growth of darolutamide-resistant cells. Additional RNA sequencing analysis identified a set of genes regulated by LOC730101, including key players in the cell cycle regulatory pathway. We further demonstrated that LOC730101 promotes darolutamide resistance by competitively inhibiting microRNA miR-1-3p. Moreover, by Hi-C sequencing, we found that is located in a topologically associating domain (TAD) that undergoes specific gene induction in darolutamide-resistant cells. Collectively, our study demonstrates the crucial role of the lncRNA LOC730101 in darolutamide resistance and its potential as a target for overcoming antiandrogen resistance in CRPC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11274508PMC
http://dx.doi.org/10.3390/cancers16142594DOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
darolutamide resistance
12
lncrna loc730101
8
loc730101 promotes
8
promotes darolutamide
8
rna sequencing
8
sequencing analysis
8
darolutamide-resistant cells
8
resistance
6
loc730101
6

Similar Publications

Understanding the molecular mechanism of inhibitor binding to prostate-specific membrane antigen (PSMA) is of fundamental importance for designing targeted drugs for prostate cancer. Here we designed a series of PSMA-targeting inhibitors with distinct molecular structures, which were synthesized and characterized using both experimental and computational approaches. Microsecond molecular dynamics simulations revealed the structural and thermodynamic details of PSMA-inhibitor interactions.

View Article and Find Full Text PDF

Background: In clinical practice, several radiopharmaceuticals are used for PSMA-PET imaging, each with distinct biodistribution patterns. This may impact treatment decisions and outcomes, as eligibility for PSMA-directed radioligand therapy is usually assessed by comparing tumoral uptake to normal liver uptake as a reference. In this study, we aimed to compare tracer uptake intraindividually in various reference regions including liver, parotid gland and spleen as well as the respective tumor-to-background ratios (TBR) of different F-labeled PSMA ligands to today's standard radiopharmaceutical Ga-PSMA-11 in a series of patients with biochemical recurrence of prostate cancer who underwent a dual PSMA-PET examination as part of an individualized diagnostic approach.

View Article and Find Full Text PDF

Preclinical evaluation of the potential PARP-imaging probe [carbonyl-C]DPQ.

EJNMMI Radiopharm Chem

January 2025

Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Background: Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [F]FluorThanatrace and [F]PARPi.

View Article and Find Full Text PDF

Purpose: Our objective was to identify the dosimetric parameters and prostate volume that most accurately predict the incidence of acute and late gastrointestinal (GI) and genitourinary (GU) toxicity in prostate cancer stereotactic ablative radiotherapy (SABR) treatments.

Methods: We conducted a retrospective analysis of 122 patients who received SABR for prostate cancer at our clinic between March 2018 and September 2022 using a five-fraction SABR regimen. The existing plans of these patients were re-evaluated according to our institutional protocols (Hacettepe University [HU-1] and HU-2) as well as PACE‑B, RTOG 0938, and NRG GU005 dose-volume constraints.

View Article and Find Full Text PDF

Background: This study aims to evaluate the capabilities and limitations of large language models (LLMs) for providing patient education for men undergoing radiotherapy for localized prostate cancer, incorporating assessments from both clinicians and patients.

Methods: Six questions about definitive radiotherapy for prostate cancer were designed based on common patient inquiries. These questions were presented to different LLMs [ChatGPT‑4, ChatGPT-4o (both OpenAI Inc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!